29 research outputs found

    Characterization of aerosol sources in León (Spain) using Positive Matrix Factorization and weather types

    Get PDF
    A one-year aerosol sampling campaign, between 2016 and 2017, was conducted in a suburban area of León city, Spain. An association between the Positive Matrix Factorization (PMF) results and air masses through circulation weather types was carried out, through the construction of linear models from the PM10 concentrations and its chemical composition. The aerosol sources, identified by PMF six-factor solution, were: traffic (29%), aged sea salt (26%), secondary aerosols (16%), dust (13%), marine aerosol (7%) and biomass burning (3%). Traffic and secondary factors showed the highest PM10 contribution in the hybrid cyclonic types with wind component from the first and second quadrant. Anticyclonic types with wind component from the first quadrant exhibited high values of secondary, aged sea salt and dust factors. The highest contributions of the dust factor were also associated with northerly types. The linear models built for estimating the source apportionment of PM10, from aerosol chemical composition and geostrophic flow, showed positive coefficients for: westerly flows (WF) in marine factor, southerly flows (SF) in secondary and traffic factors, and shear southerly vorticities (ZS) in dust factor. Negative dependences were observed for ZS in aged sea salt factor and for SF in dust factor. The PM10 mass concentration calculated by the linear models and by the PMF model were strongly correlated. This can be very useful to determine the contribution of a specific source to PM10 in León, only by knowing some meteorological and chemical variables.publishe

    Impact of vacuum cleaning on indoor air quality

    Get PDF
    Vacuum cleaning can be a household source of particulate matter (PM) both from the vacuum motor and from settled dust resuspension. Despite the evidence of this contribution to PM levels indoors, the effect of this source on PM composition is still unknown. In this study, four vacuum cleaners (washable filter bag less, wet, bagged and HEPA filter equipped robot) were tested for the emission rate of particulate mass and number. The detailed PM chemical characterisation included organic and elemental carbon, metals and organic speciation. PM10 emission rates from bagged vacuum operation were much higher (207 ± 99.0 μg min−1) compared with the ones obtained from wet (86.1 ± 16.9 μg min−1) and washable filter bag less vacuums (75.4 ± 7.89 μg min−1). Particle (8–322 nm) number emission rates ranged from 5.29 × 1011 (washable filter bag less vacuum) to 21.2 × 1011 (wet vacuum) particles min−1. Ratios of peak to background levels indicate that vacuuming can elevate the ultrafine particle number concentrations by a factor ranging from 4 to 61. No increase in PM mass or number concentrations was observed during the HEPA filter equipped vacuum operation. The increase in copper and elemental carbon PM10 contents during vacuuming suggested motor emissions. Organic compounds in PM10 included alkanes, PAHs, saccharides, phenolics, alcohols, acids, among others. However, it was not possible to establish a relationship between these compounds and vacuuming due to the vast array of possible household sources. The cancer risks associated with metals and PAH inhalation were negligible.publishe

    One-year study of airborne sugar compounds: cross-interpretation with other chemical species and meteorological conditions

    Get PDF
    The daily evolution of seventeen sugar compounds (seven saccharides, seven alcohol-saccharides and three anhydrosaccharides) in atmospheric aerosol samples collected between 9 March 2016 and 14 March 2017 was studied in León (Spain). The main links between the concentration of sugar compounds and various chemical species, pollen, fungal spores and meteorological conditions were investigated. The results showed that, in spring, when high levels of metabolic activity of the plants occur and temperatures increase, glucose, sucrose, 2-methyl-erithritol, mannitol, arabitol and inositol, are significantly correlated with airborne pollen concentrations. Between spring and autumn, Alternaria air concentrations are significantly correlated with temperatures, arabitol and sorbitol + adonitol concentrations. Furthermore, during rainy days, Alternaria is also correlated with mannitol. In autumn, lower temperatures cause an increase in the concentrations of levoglucosan, mannosan and galactosan, probably due to the increased use of domestic heating devices. These anhydrosugars and arabinose, fructose and glucose, are significantly correlated with K, NO3−, EC, OC, Cu, Zn, Se, Pb, V and Ni, while mannosan also correlates with As, showing that these anhydrosaccharides can be emitted from different anthropogenic sources. Precipitation causes an increase in glucose and sucrose concentrations, due to the break of pollen particles that produce hundreds of fine size particles. Besides, precipitation causes an increase in arabitol concentrations, due to the release and growth of fungi.publishe

    The role of snow in scavenging aerosol particles: A physical-chemical characterization

    Get PDF
    [EN] The below cloud scavenging of aerosols by snow has been analysed in León (NW Spain). Six snow events were registered over the course of one year of study. Ultrafine and accumulation aerosol particles were measured using a scanning mobility particle sizer spectrometer, while hydrometeors were characterized using a disdrometer. Furthermore, the chemical composition of the melted snow-water samples (soluble and insoluble fractions) was analysed. The scavenging coefficient (λ) showed a great variability among events. An effective washing of particles was observed during the first 30 min of snowfall. The mean change in the scavenging efficiency (%ΔC) of particle number concentration (PNC) and λ coefficient during this time interval were: i) nucleation mode: 36.3 % and 3.02 · 10−4 s−1; ii) Aitken mode: 30.4 % and 2.37 · 10−4 s−1 and iii) accumulation mode: 22.4 % and 1.77 · 10−4 s−1. The range of particle sizes that is less efficiently scavenged by snowfall was observed between 400 and 600 nm. When analyzing the whole snow event, an increase of PNC was observed. Two possible explanations underlie this behaviour: it could be caused by changes in air masses or by the resuspension of aerosol particles scavenged by snowflakes upon reaching the ground. A clear relationship was observed between Ca2+, SO42− and NO3− concentrations of aerosol particles before the snow event and the concentrations registered in the melted snow-water. The largest and smallest changes in aerosol number concentrations were caused by snowflakes of 3 and 6 mm in diameter, respectively. The particle size distributions (PSD) were fitted to log-normal distributions and the parameters were compared before and after snowfall.S

    Transcriptomic analyses reveal differential gene expression of immune and cell death pathways in the brains of mice infected with West Nile virus and chikungunya virus

    Get PDF
    West Nile virus (WNV) and chikungunya virus (CHIKV) are arboviruses that are constantly (re-)emerging and expanding their territory. Both viruses often cause a mild form of disease, but severe forms of the disease can consist of neurological symptoms, most often observed in the elderly and young children, respectively, for which the mechanisms are poorly understood. To further elucidate the mechanisms responsible for end-stage WNV and CHIKV neuroinvasive disease, we used transcriptomics to compare the induction of effector pathways in the brain during the early and late stage of disease in young mice. In addition to the more commonly described cell death pathways such as apoptosis and autophagy, we also found evidence for the differential expression of pyroptosis and necroptosis cell death markers during both WNV and CHIKV neuroinvasive disease. In contrast, no evidence of cell dysfunction was observed, indicating that cell death may be the most important mechanism of disease. Interestingly, there was overlap when comparing immune markers involved in neuroinvasive disease to those seen in neurodegenerative diseases. Nonetheless, further validation studies are needed to determine the activation and involvement of these effector pathways at the end stage of disease. Furthermore, evidence for a strong inflammatory response was found in mice infected with WNV and CHIKV. The transcriptomics profile measured in mice with WNV and CHIKV neuroinvasive disease in our study showed strong overlap with the mRNA profile described in the literature for other viral neuroinvasive diseases. More studies are warranted to decipher the role of cell inflammation and cell death in viral neuroinvasive disease and whether common mechanisms are active in both neurodegenerative and brain infectious diseases

    De constitutie van Curaçao

    No full text

    Impact of wood combustion on indoor air quality

    Get PDF
    The incomplete wood combustion in appliances operated in batch mode is a recognised source of both in- and outdoor airborne pollutants, especially particulate matter (PM). Data on pollutant levels and PM characteristics in households with wood burning devices in developed countries are scarce with most studies describing stove change out programmes or other intervention measures. The aim of the present study was to simultaneously evaluate indoor and outdoor concentrations of CO, CO2 and PM10 during the operation of wood burning appliances (open fireplace and woodstove) in unoccupied rural households. PM10 samples were analysed for water soluble inorganic ions, major and trace elements, organic carbon (OC), elemental carbon (EC), and detailed organic speciation. The CO 8-hour average concentrations did not exceed the protection limit despite the sharp increases observed in relation to background levels. During the open fireplace operation, PM10 levels rose up 12 times compared to background concentrations, while the airtight stove resulted in a 2-fold increase. The inhalation cancer risk of particulate bound PAHs in the room equipped with wood stove was estimated to be negligible while the long-term exposure to PAH levels measured in the fireplace room may contribute to the development of cancer. The excess lifetime cancer risk resulting from the particle-bound Cr (VI) exposure during the fireplace and woodstove operation was higher than 1.0 × 10−6 and 1.0 × 10−5, respectively. Levoglucosan was one of the most abundant individual species both indoors and outdoors. This study underlines air pollution hazards and risks arising from the operation of traditional wood burning appliances.publishe
    corecore