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Abstract 

The daily evolution of seventeen sugar compounds (seven saccharides, seven alcohol-saccharides 

and three anhydrosaccharides) in atmospheric aerosol samples collected between 9 March 2016 and 

14 March 2017 was studied in León (Spain). The main links between the concentration of sugar 

compounds and various chemical species, pollen, fungal spores and meteorological conditions were 

studied. The results showed that in spring, when high levels of metabolic activity of the plants occur 

and temperatures increase, glucose, sucrose, 2-methyl-erithritol, mannitol, arabitol and inositol, are 

significantly correlated with airborne pollen concentration. Between spring and autumn, Alternaria 

air concentrations is significantly correlated with temperatures, arabitol and sorbitol + adonitol 

concentrations. Furthermore, during rainy days, Alternaria is also correlated with mannitol. In 

autumn, lower temperatures cause an increase in the concentrations of levoglucosan, mannosan and 

galactosan, probably due to the increased use of domestic heating devices. These anhydrosugars and 

arabinose, fructose and glucose, are significantly correlated with K, NO3
-
, EC, OC, Cu, Zn, Se, Pb, 

V and Ni, while mannosan also correlates with As, showing that these anhydrosaccharides can be 

emitted from different anthropogenic sources. Precipitation causes an increase in glucose and 

sucrose concentrations, due to the break of pollen particles that produce hundreds of fine size 

particles. Besides, precipitation causes an increase in arabitol concentration, due to the release and 

growth of fungi. 
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Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

mailto:aicalg@unileon.es


 

 

 

1. Introduction 

Atmospheric bioaerosols comprise a variety of biological particles that include bacteria, fungi, 

fungal spores, pollen and allergenic pollens, arthropod allergens (e.g., from mites and cockroaches), 

pet allergens, algae, amoebae and viruses (Després et al., 2012; Douwes et al., 2008; Fröhlich-

Nowoisky et al., 2016). They play an important role in human health and atmospheric processes. 

Pollen allergens are considered to be primarily glycoproteins that are released into the atmosphere 

in the form of exudates. Thus, it is the glucidic fraction that triggers the allergic responses, so an 

interaction of sugars with other particles, biotic or not, can clearly increase the symptoms of 

respiratory allergies (Dall’Antonia et al., 2014). The presence of high levels of pollen in the 

atmosphere has been related to allergic respiratory diseases, such as asthma, rhinitis, and atopic 

dermatitis (D’Amato et al., 2007; Fröhlich-Nowoisky et al., 2016; Fukutomi and Taniguchi, 2015). 

In particular, among fungal spores, the specie Alternaria alternata can be considered one of the 

most allergenic species. The main allergen produced by this fungal spore is the Alt a 1 acid 

glycoprotein (16.4 kDa and 15.3 kDa band), which is found in the cytoplasm and cellular wall of 

mold and mycelial spores. It is related to the development of asthma and rhinitis, as well as to 

epidemics of asthma exacerbation (Armentia et al., 2019; Fukutomi and Taniguchi, 2015), although 

its true biological function remains unknown.  

Sugar compounds (saccharides, alcohol-saccharides and anhydrosaccharides) represent an 

important part of the water-soluble organic fraction in the atmospheric aerosol (Barbaro et al., 2019; 

Burshtein et al., 2011; Simoneit et al., 2004; Wang et al., 2018; Yttri et al., 2007). These organic 

compounds can have their origin in different anthropogenic and natural sources, including biomass 

combustion and/or biogenic primary emissions (Table S1). 

Dust storms have been reported to be a natural source of bioaerosols and sugar compounds such 

as arabitol, mannitol, sucrose and tehalose (found in many anhydrobiotic organism), due to the 

resuspension of soil material and biogenic sources like pollen and fungal spores (Kumar et al., 

2017; Oduber et al., 2020, 2019b). Anhydrosaccharides, levoglucosan, galactosan and mannosan, 

which originate from the pyrolysis of cellulose and hemicellulose, and potassium, located in the 

cytoplasm of plants, are used as biomass burning tracers (Vicente and Alves, 2018). Arabitol and 

mannitol, responsible for the energy storage in fungi, have been pointed out as biomarkers of fungal 

spores in the air (Bauer et al., 2008; Burshtein et al., 2011; Medeiros et al., 2006). Nevertheless, 

high concentrations of alcohol-saccharides have also been observed in plant tissues. Mannitol is 

found in more than 70 different families of plants, as well as bacteria. Similarly, sorbitol is the 

primary photosynthetic metabolite of sucrose in many species, for example of the Rosaceae family, 

including all of the genus Malus, Pyrus and Prunus (apples, pears and stone fruits, respectively) 
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(Dumschott et al., 2017). Sucrose, fructose and glucose are free sugars found in high concentrations 

in plant tissues and are major contributors to pollen (Fu et al., 2012; Medeiros et al., 2006; Simoneit 

et al., 2004; Speranza et al., 1997). Besides, a small fraction of fructose, glucose and other less 

studied saccharides, such as arabinose, galactose, xylose, xylitol and ribose, has been observed in 

smoke samples from biomass burning (Alves et al., 2011; Medeiros et al., 2006; Vicente et al., 

2013). 

The atmospheric concentrations of bioaerosols are also affected by meteorological conditions. 

Temperature, wind speed, relative humidity and precipitation are parameters that influence the 

airborne concentration of fungal spores, plants flowering and pollination periods (Fernández-

González et al., 1993; Filali Ben Sidel et al., 2015; Grinn-Gofroń et al., 2019; Makra et al., 2014; 

Oduber et al., 2019a; Sabo et al., 2015). Although the impact of precipitation on different sugar 

compounds have not been examined in detail until now, to better understand atmospheric processes, 

it may be important to assess the behaviour of these constituents after a rain event. For example, the 

below-cloud scavenging (BCS) process has a direct impact on the aerosol concentration in the air 

(i.e. Blanco-Alegre et al., 2018; Castro et al., 2010; Cugerone et al., 2018). This process depends on 

several features of rainfall, such as raindrop size distribution and rainfall rate, and on the 

local/regional concentration of the particles and gases in the atmosphere (Celle-Jeanton et al., 2009; 

Xu et al., 2017). The scavenging of different species, mainly inorganic, and the relationship with the 

intensity and volume of precipitation, has been studied by several authors in different regions of the 

world (i.e. Blanco-Alegre et al., 2019; Calvo et al., 2012; Custódio et al., 2014; Pan and Wang, 

2015; Uchiyama et al., 2017). Even though a washing effect by rain has been observed for several 

aerosols, certain particles as pollen can swell and rupture producing hundreds of fine-size particles 

(D’Amato et al., 2007), increasing the concentration of sugar compounds in the atmosphere. 

It is important to know under what meteorological conditions sugar compounds are emitted and 

what chemical and biological markers are well correlated with them. This will allow to determine 

the natural and/or anthropogenic origin of these compounds. This type of studies is only possible if 

a long-term study is carried out, considering the meteorological parameters, chemical composition 

and biogenic contribution of atmospheric particles. Thus, this study aims to: i) evaluate, between 

March 2016 and March 2017 in León (Spain), the daily and seasonal evolution of seventeen sugar 

compounds in the PM10 fraction: arabinose, fructose, galactose, glucose, ribose, sucrose, xylose, 

adonitol, arabitol, 2-methyleryritol, myoinositol, mannitol, sorbitol, xylitol, galactosan, 

levoglucosan and mannosan; ii) establish the correlation with meteorological parameters, with some 

biological markers (pollen and fungal spore concentrations) and with chemical markers (K, As, Se, 

SO4
2-

, NO3
-
, Pb, Zn, etc.); iii) finally, estimate the impact of precipitation on the concentration of 

sugar compounds. 

To our knowledge, only a few studies have evaluated the temporal evolution of the main sugar 

compounds in particulate matter and much less have related their concentrations in the environment 
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to meteorological conditions, mainly under rain weather, to some biological tracers and to other 

chemical species. 

 

2. Experimental 

2.1. Sampling  

2.1.1. Site 

The city of León is located in the northwest of the Iberian Peninsula (42º 36′ N, 05º 35′ W and 

838 m a.s.l) and is characterised by a continental type climate with influence of the Mediterranean. 

Winters are cold and long, with average temperatures of 5 ± 3 ºC, while summers are warm with 

average temperatures of 20 ± 4 ºC. Spring is the season with the highest amount of rain, while 

summer is usually a dry season with frequent storms (Castro et al., 2010; Fernández-Raga et al., 

2017).  

The sampling campaign was carried out in a suburban area located in the northeast of León city, 

Spain (Fig. S1), more specifically, at the terrace of the Faculty of Veterinary at the University of 

León. The sampling site is characterised by the absence of large emitting industries and a high 

contribution of biomass burning and fossil fuel emissions, due to the high traffic flow in the vicinity 

of the sampling area and the use of domestic heating devices in the city centre and in nearby towns 

(Blanco-Alegre et al., 2019; Oduber et al., 2018). In addition, León is greatly affected by primary 

biological emissions from the surroundings. Furthermore, numerous forests with many types of 

vegetation, whose pollination contributes to a high concentration of pollen, are about 30 km north 

from the city (Calvo et al., 2018; Oduber et al., 2019a). Approximately 30 km south of the city, 

extensive agricultural areas are located, which can represent a significant source of fungi due to 

rotting fruits or when crops are harvested. 

2.1.2. PM10  

PM10 samples were collected every 24 hours, beginning at 1200 UTC every day between 9 

March 2016 and 14 March 2017. For traceability in PM10 measurements (Aggarwal et al., 2013), 

the sampling was carried out following the procedures established in the standard EN 12341: 2014 

by using a low volume sampler (TECORA, ECHOPM), with a sampling flow rate of 2.3 m3 h−1 

(referred to normal temperature and pressure conditions) and equipped with 47 mm diameter Teflon 

filters. Furthermore, a high-volume sampler (CAV-Mb), operating with a flow rate of 30 m3 h-1 

and equipped with 150 mm diameter quartz filters (prebaked at 600 °C for 6 hours) was also used. 

After sampling, quartz filters were folded and stored in aluminium foil (also baked), while Teflon 

filters were stored in Petri dishes. Both types of filters were stored in the freezer at -18 °C until 
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analysis. A total of 325 samples of each, Teflon and quartz filters, were collected throughout the 

sampling campaign.  

After and before the sampling filters were weighted (± 0.00001 g) in an electronic semi-micro 

balance (Mettler Toledo, XPE105DR). Quartz filters were used for the determination of the PM10 

mass by the gravimetric method. Following the quality assurance/quality control (QA/QC) 

procedures described for sample collection, filter transport and handling, and filter weighing in the 

Normative EN 12341 of the European Committee for Standardization (2014), the balance and filters 

were conditioned for 24 hours in a room with controlled relative humidity (< 50%) and temperature 

(20 °C), and the microbalance was auto calibrated before each session, according to the instructions 

of the manufacturer. 

The time period for each season was considered as follows: spring from 20 March to 20 June, 

summer from 21 June to 21 September and autumn from 22 September to 20 December and winter 

from 21 December to 19 March. 

  

2.1.3. Bioaerosols and allergenic fraction  

Atmospheric bioaerosol (particles between 2 and 200 μm in diameter) sampling was performed 

continuously by using a Hirst volumetric trap (Hirst, 1952) mod. Lanzoni VPPS 2000, placed in the 

sampling location described in section 2.1.1. The complete sampling system contains a motor, a 

vacuum pump, a orifice, a rotating drum, a wind vane, a clockwork system and an impaction 

support. The wind vane allows permanent rotation of the trap head so that the orifice faces the wind. 

The suction pump works 24 h a day and continuously throughout the year at the same flow rate (10 

L min
−1

). A 345 mm Melinex tape impregnated with a silicone fluid was exposed for seven days 

inside the sampler. The Melinex tape was attached to a drum with a driving speed of 2 mm h
−1

 

regulated by means of a clockwork mechanism. The daily analysis of the samples was carried out 

according to the Spanish Aerobiological Network (Galan et al. 2007), based on four parallel 

longitudinal transects along the slides. The pollen count by optical microscopy is possible due to 

their appearance stained with fuchsine. 

The atmospheric aerosol for the quantification of the allergenic fraction was sampled with a low-

volume sampler Burkard Multi-Vial Cyclone (Burkard Manufacturing Co. Ltd.) and with a suction 

rate of 16.5 L min
-1

. Atmospheric particles were collected dry directly into a 1.5 mL Eppendorf vial 

every 24 h and stored at -20 ºC. 

2.1.4. Rainfall parameters 

Rain variables were measured by a laser disdrometer (Laser Precipitation Monitor, LPM) of 

Thies Clima, which registered raindrops between 0.125 and 8 mm in 22 drop size ranges, on a 1-

minute basis (Fernández-Raga et al., 2009). From the data provided by the LPM, the following 
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rainfall variables were obtained: precipitation intensity, accumulated precipitation, number of drops, 

volume swept by falling drops, mean and standard deviation of raindrop sizes. 

2.2. Analytical techniques 

2.2.1. Particulate sugar compounds 

A portion of each quartz filter, with an area of about 14.14 cm
2
, was used for the determination 

of 17 sugar compounds: 7 saccharides (arabinose, fructose, galactose, glucose, ribose, sucrose and 

xylose), 7 alcohol-saccharides (adonitol, arabitol, 2- methylerythritol, myo-inositol, mannitol, 

sorbitol and xylitol) and 3 anhydrosaccharides (galactosan, levoglucosan and mannosan). 

Sugar compounds were extracted with 3 mL of ultra-pure Milli-Q water with ultrasonic 

agitation. The extracts were filtered with a 0.2 μm pore PTFE syringe filter and transferred to glass 

vials for injection into the chromatograph on the same day. The analysis of the 17 sugar compounds 

was carried out by means of a Thermo Scientific Dionex
TM

 ICS-5000 ion chromatograph equipped 

with a CarboPac® PA-1 (2 × 250 mm) anion-exchange analytical column. The methodology is 

based on Caseiro et al. (2007) and Piazzalunga et al. (2010), using multi-step gradient conditions 

with ultra-pure Milli-Q water and two solutions of NaOH (200 mM and 5 mM). The methodology 

allowed a good separation of sixteen of the seventeen sugars analysed. The alcohol-sugars, sorbitol 

and adonitol co-eluted in the same retention time, so the results obtained for these two compounds 

are shown as a sum of both as SA. 

2.2.2. Organic and elemental carbon analysis 

Two quartz filter punches, 9 mm in diameter each, were used to determine organic carbon (OC) 

and elemental carbon (EC) by using the thermal-optical system developed by the University of 

Aveiro (Portugal), following the methodology described by Alves et al. (2015) and Pio et al. (2011). 

2.2.3. Water-soluble ions 

Half of each Teflon filter was used to extract water-soluble ions with 6 mL ultra-pure Milli-Q 

water with ultrasonic agitation. The extracts were filtered with a 0.2 µm pore size PTFE syringe 

filter and stored in glass vials in the refrigerator until analysis. The determination of water-soluble 

ions was carried out by means of a Thermo Scientific Dionex
TM

 ICS-5000 ion chromatograph. 

Cations (Na
+
, K

+
, NH4

+
, Mg

2+
 and Ca

2+
) were separated with an IonPac® CS16 (4 × 250 mm) 

column and using a solution of 30 mM of methanesulphonic (MSA) as mobile phase. Anions (Cl
-
, 

NO3
-
 and SO4

2-
) were separated with an IonPac® AS11 (4 × 250 mm) column and with a solution of 

30 mM of potassium hydroxide (KOH) as mobile phase. 

2.2.4. Trace elements 
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The other half of the Teflon filters was used for the determination of major trace elements (Na, 

Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Pb), using the PIXE 

technique (Particle-Induced X-ray Emission) described by Lucarelli et al. (2015). 

2.2.5. Allergenic fraction 

The quantification of the aeroallergen Alt a 1 was carried out following the method described by 

Fernández-González et al. (2019, 2010), which implies modifications of the methods previously 

described by Moreno-Grau et al. (2006) and Takahashi et al. (2001). The methodology for the 

determination of the allergenic fraction related to Alt a 1 protein, consists of two stages: extraction 

and quantification. 

In the extraction phase, atmospheric particle samples, previously collected in Eppendorf tubes, 

were centrifuged at 14000 r.p.m. and subsequently extracted with a phosphate buffer solution (50 

mM pH 7.0), NaCl 150 mM, EDTA 3 mM, Tween 20 at 0.005% and NH4HCO3 125 mM. The 

extract was separated by centrifugation at 4000 r.p.m. for 10 minutes and both the supernatant and 

the sediment were stored separately at -20 ° C. 

The content of Alt a 1 protein in the extracted samples was quantified using a double sandwich 

ELISA (Enzyme Linked Immuno Sorbent Assay) method. The ELISA plates (Greiner, 

Frickenhausen, Germany) were coated with the antibody corresponding to Alt a 1 in a phosphate 

buffered saline (PBS) solution. Once the incubation period was over, the content of the plates was 

emptied and a PBS solution was added with 1% Bovine Serum Albumin (BSA) and 0.05% Tween-

20 (PBS-BSA-T). The plates were incubated for 1 hour, and then their contents were emptied to 

perform 3 successive washes with a PBS solution with 0.1% BSA and 0.1% Tween-20 (PBS-B-T). 

Finally, the enzymatic activity was determined by adding o-phenylenediamine and measuring the 

absorbance of the resulting solutions with a plate reader. The quantification of the allergen was 

carried out by interpolating the absorbance values in a linear calibration curve. 

 

Concerning the QA/QC, in the analytical techniques described in this section, the following 

analytical checks were carried out: i) a duplicate analysis was carried out every 10 samples, ii) the 

extraction and analysis of blank filters were carried out, iii) the detection and quantification limits 

were determined from the blank filters, iv) every 10 or 15 samples a known standard was analyzed 

to check the quantification. Furthermore, quality control for the entire database of ions was verified 

by calculating the ion balance. 

 

2.3. Scavenging coefficient 
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The scavenging coefficient was evaluated through the following equation: 

    
     

  
     (1) 

 

where    and    are the concentration of the studied sugar compound after and before the 

precipitation event, respectively. Sugar compound concentrations before and after the precipitation 

event were obtained as a mean value, calculated from the concentrations registered 2 days before 

and 2 days after the event, respectively. Consequently, a negative ΔC indicates effective 

scavenging. 

 

2.4. Additional data 

Weather information (temperature, precipitation and relative humidity) was recorded in the 

sampling location with an automatic meteorological station. Additional weather information 

(insolation and wind) was obtained from the database of the National Agency for Meteorology 

(www.aemet.es). For the statistical treatment, SPSS software (IBM Statistics Software V. 24) was 

used. The Kruskal-Wallis non-parametric test (Kruskal and Wallis, 1952) followed by Dunn test 

(Dunn, 1964) was applied in order to determine the eventual statistically significant differences (p < 

0.05). Furthermore, the correlations were calculated using the non-parametric Pearson rank 

correlation method (significance level p<0.05). 

 

3. Results and discussion 

3.1. Annual evolution of sugar compounds in PM10 

During the sampling campaign the annual mean PM10 concentration was 23 ± 8 µg m
-3

, with 

concentrations ranging between 4 and 59 µg m
-3

. The total sugar concentrations in PM10 ranged 

between 1.3 and 1052 ng m
-3

, with an annual mean of 64 ± 108 ng m
-3

 (Table S2), which represents 

0.3 % of PM10. Spring was the season with the highest daily and mean total sugar concentrations 

(1052 and 122 ± 193 ng m
-3

, respectively), and the non-parametric Kruskal-Wallis test showed that 

there are statistically significant differences between the total sugar concentration in spring and the 

rest of the seasons. In contrast, winter was the season with the lowest total sugar concentration (41 

± 47 ng m
-3

). Theodosi et al. (2018) reported similar annual values, in a rural site in Greece, with a 

total mean concentration of 57.7 ng m
-3

. Shahid et al. (2019) showed a total mean concentration of 

2100 ng m
-3

, in a study carried out in an urban site of Pakistan in December. Emygdio et al. (2018) 

reported a total mean sugar concentration of 363.2 ng m
-3

, in Brazil, between autumn and winter. 
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Moreover, Liu et al. (2016) documented a total sugar concentration of 792 ng m
-3

 in Beijing, China, 

between 2010 and 2011. The differences are probably due to the quantification of compounds not 

entirely coincident, the variety of sources, the period of sampling, the weather conditions and the 

impact of long-range and local events that may affect sugar levels at each location. Besides, in 

temperate regions, early spring is the period of greatest plant activity, when most species restart 

vegetative growth and flowering occurs. All this implies important movements of cellulose during 

plant development. In León, high levels of sugar compounds in the atmosphere, caused by 

anthropogenic and biogenic emissions, is common throughout the year. Between autumn and 

winter, biomass burning emissions are frequent due to the use of domestic heating devices (Blanco-

Alegre et al., 2019). In spring and summer, pollen and airborne spores are present because of the 

flowering and pollination of the large mass of plants and sporulation of fungi surrounding the city 

(Calvo et al., 2018; Fernández-González et al., 1993; Oduber et al., 2019a). 

The monthly evolution of the sugar compounds shows higher concentrations of arabinose, 

fructose, glucose, ribose, sucrose, xylose, arabitol, 2-methylerythritol and myo-inositol between 

May and July (Fig. S3). The maximum mean seasonal concentration of arabinose, fructose, glucose, 

ribose and sucrose was observed in spring (1.08, 50, 25, 10, 28 ng m
-3

, respectively) (Fig. S2, Table 

S2), and the Kruskal-Wallis test showed that there are statistically significant differences between 

the concentration of these sugar compounds in spring and the rest of the seasons, except summer. 

All these saccharides, except ribose and xylose, are significantly correlated (r > 0.6), indicating a 

common origin. These saccharides can be abundantly emitted as primary biogenic aerosol particles 

(fungal spores, pollen, bacteria, and plant fragments) (Medeiros et al., 2006; Rathnayake et al., 

2017; Theodosi et al., 2018). Therefore, the higher concentrations of these saccharides between 

May and July could be linked to the main pollen season in León (Fernández-González et al., 1993; 

Oduber et al., 2019a) and to the continuous lawn mowing around the sampling point, which implies 

the breakage of the vegetal tissues of numerous herbaceous plants, with the release of sugars to the 

atmosphere. 

Between October and February, galactose, mannitol, SA, galactosan, levoglucosan and 

mannosan, showed the highest concentrations, while arabitol and xylitol also exhibited an important 

contribution during these months. Levoglucosan, mannosan and galactosan (significantly correlated, 

r > 0.5) showed highest mean seasonal concentration in autumn and winter (Fig. S2, Table S2), with 

significant differences between the concentration in these two seasons and those in spring and 

summer. These anhydrosaccharides are usually related to biomass burning emissions (Vicente and 

Alves, 2018), which are frequent between autumn and early spring, due to wood burning for 

domestic heating purposes in León. Moreover, during summer, the Iberian Peninsula is often 

affected by forest fires. Thus, emissions from wildfires may contribute to the enhancement of 

anhydrosugar levels in the atmosphere during this season. 
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Higher concentrations of fructose, sucrose and glucose during summer, and higher 

concentrations of anhydrosugars during winter, were also reported by Wang et al. (2018) in an 

urban station of Xi’an, China. The same behaviour was observed by Yttri et al. (2007) in a suburban 

station of Norway, showing concentrations of sucrose, levoglucosan, mannosan and galactosan in 

winter of 5.3, 605, 167 and 4 ng m
-3

, respectively, and 20, 47, 10 and 3 ng m
-3

, respectively, in 

summer.  Both studies found that the increase in the anhydrosugar concentrations during cold 

seasons can be due to an increase in the use of domestic heating devices, together with the 

stagnation caused by the low boundary layer. 

 

3.2. Sugar compounds vs meteorological parameters 

Insolation showed a significant correlation with glucose (r = 0.1, Table S3). However, when 

evaluated by season, it is observed that this correlation increases up to 0.3, also showing a 

correlation with arabinose (r = 0.4) and arabitol (r = 0.5) in spring. Glucose, sucrose, 2-

metylerythritol and mannitol revealed a significant positive correlation with mean temperatures (T), 

with r between 0.1 and 0.5. The same behaviour was observed for these sugar compounds and 

minimum and maximum temperatures (TMin, TMax, respectively). In spring, arabinose, fructose, 

galactose, glucose, sucrose, arabitol, 2-metylethritol, inositol and mannitol are positively correlated 

with T and TMax (r > 0.5). Fernández-González et al. (1993) observed that the airborne pollen 

concentration in León is greatly affected by temperatures and reported that pollen concentrations 

have maximum values with temperatures between 20 and 25 ºC, which are usual between spring 

and summer in León. Furthermore, Calvo et al. (2018) and Fernández-González et al. (1993) also 

reported that in León the maximum pollen concentration is reached between late-spring and early-

summer, due to the high concentration of several pollen types (Quercus, Pinus, Salix, Plantago, 

Ericaceae, Leguminosae, Urticaceae and Poaceae). 

The anhydrosaccharides displayed a negative significant correlation with T in spring 

(galactosan and levoglucosan) and with TMax in autumn (galactosan). Due to the low temperatures 

and high relative humidity between late-autumn and early-spring in León (Table 1), the use of 

heating devices is very common, causing increased levels of anhydrosugars due to emissions from 

biomass-based domestic heating devices. 

Wind speed affected air sugar concentrations particularly in spring, when winds are at their 

strongest in León (Table 1). In this season, arabinose, glucose, sucrose, arabitol, 2-metylerythritol 

and mannitol are negatively correlated with wind speed (0.3 < r < 0.6). However, during summer, 

the concentration of sucrose increases with increasing wind speed. This fact could be related with 

the location of the source. Airborne particles emitted far from the sampling location need high wind 

speeds to reach the monitoring site, so aerosol concentrations increase with wind speed. 
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Nevertheless, a decrease in concentrations with increasing wind speed suggests sources close to the 

sampling site, with the greatest impact in stagnant atmospheric conditions (Carslaw et al., 2006; Yu 

et al., 2004). 

 

Table 1. Seasonal mean values for insolation, wind speed (ws), temperature (T), minimum 

temperature (TMin), maximum temperature (TMax), relative humidity (RH), total accumulated 

precipitation and rain days in León (Spain) during the sampling period. 

 Winter Spring Summer Autumn 

Insolation (h day-1) 6 ± 4 9 ± 4 13 ± 2 6 ± 4 

ws (m s-1) 0.9 ± 0.7 1.1 ± 0.8 0.6 ± 0.3 0.6 ± 0.4 

T (°C) 5 ± 3 11 ± 5 21 ± 3 10 ± 4 

TMin (°C) 0 ± 3 5 ± 4 12 ± 3 4 ± 4 

TMax (°C) 12 ± 4 17 ± 5 30 ± 3 16 ± 6 

RH (%) 70 ± 12 63 ± 11 48 ± 8 71 ± 11 

Precipitation (mm) 131.5 155.1 15.3 69.4 

Rain days 31 24 6 23 

 

3.3. Sugar compounds and precipitation 

In order to evaluate the effect of precipitation on the concentrations of sugar compounds, a total 

of 41 precipitation events were studied during the sampling campaign. Table 2 shows the main 

characteristics of these events.  

Table 2. Mean monthly intensity, accumulated precipitation and duration of precipitation events in 

León during the sampling period. 

Month Number of events Intensity (mm h
-1

) Precipitation (mm) Duration (h) 

January 5 0.4 ± 0.2 21 12 ± 8 

February 6 1.1 ± 0.4 97 14 ± 2 

March 1 0.2 1 5 

April 11 0.7 ± 0.4 93 9 ± 6 

May 4 1.1 ± 0.4 38 10 ± 6 

June      

July     

August 3 2 ± 2 6 5 ± 4 

September     

October 3 0.61 ± 0.07 15 10 ± 2 

November 3 0.5 ± 0.3 10 9 ± 5 

December 5 0.5 ± 0.3 20 9 ± 5 

 

Although for some of the sugar compounds, a decrease in the concentration after a precipitation 

event is observed (Fig. 1), there are some cases (glucose, mannosan, fructose, sucrose, ribose, SA, 
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mannitol and arabitol) in which an increase is registered. As D’Amato et al., (2007) pointed out 

that, during periods of rain, pollen particles can swell and break, producing hundreds of fine-size 

particles, and increasing the population of the airborne modes, which may persist in the atmosphere 

for weeks after precipitation (Bigg et al., 2015; Morris et al., 2017). This can be due to the 

hydration of the pollen grains and to the release of glycidic molecules (associated or not with 

proteins) from the cytoplasm or to the rupture of some pollen spores and / or bacteria walls, if there 

are very strong pressure changes (Fernández-González et al., 2010). 

Arabitol, SA and mannitol also showed a substantial increase in their concentrations after a rain 

event. These saccharides are used as tracers for airborne fungal spores, and rain could trigger 

mechanisms of passive and/or active release and/or promote the growth of fungi, germination and 

growth of hyphae (Schulthess and Faeth, 1998). Wet conditions that follow rainfall events are 

favourable for the active release of fungal spores, causing an increase in their concentrations in the 

air (Rodríguez-Rajo et al., 2005; Van Osdol et al., 2004). 

 

 

Fig. 1. Mean scavenging coefficients (boxes) and standard deviations (whiskers) for each sugar 

compound during the sampling campaign in León. 

 

 Significant positive correlations between ∆C of glucose and several rain parameters (mean 

intensity, swept volume and drop mean size) were observed (Table S4). Furthermore, raindrops 

larger than 3 mm correlated significantly with ∆C for this sugar, while for smaller raindrops, the 

correlation shows a (non-significant) washing effect. A similar pattern is observed for fructose for 

raindrops larger than 4 mm. Mannosan concentration raises significantly after rain with increasing 

mean rain intensities, accumulated precipitations and drop mean sizes. For larger raindrop sizes, a 

positive correlation with ∆C is also registered. These results could support the existence of a 

threshold raindrop size above which the release of sugar compounds prevails over the scavenging 

process. 

3.4. Sugar compounds vs biomarkers 

The total pollen concentration was positively correlated with arabinose, fructose, glucose, 

sucrose and myo-inositol (r > 0.4, Table S5). The polar plots of these sugar compounds (Fig. S4), 

showed that from March to May, the main source is located mainly in the third and fourth quadrant, 

probably due to the numerous forests with many types of vegetation about 30 km north from the 

city.    Graham et al. (2003) also reported higher glucose, fructose and sucrose concentrations 
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coinciding with higher pollen, fern spores and insect counts, in Amazonia in 2001. Medeiros et al. 

(2006) observed that, in Howland Forest, United States, glucose was the most abundant 

monosaccharide during the growing season, while galactose and arabinose increased between spring 

and mid-summer, as observed in this study (Fig. S3), reflecting the synthesis of primary sugars at 

the beginning of the plant growing season. The Pearson correlation of total pollen concentration 

with fructose, glucose and sucrose increases in spring (r > 0.4), coinciding with the main pollen 

season (Fig. 2). 

 

Fig. 2. Daily evolution of the total pollen concentration and sum of concentrations of sugar 

compounds: myo-inositol, 2-methylerythritol, arabitol, arabinose, fructose, galactose, glucose, 

mannitol, ribose, and sucrose, in León during the sampling campaign. 

 

Mannitol was also significantly correlated with pollen concentration in spring (r = 0.4). 

Burshtein et al. (2011) explained that, although mannitol is common in fungi, it is also abundant in 

various families of plants. Therefore, the correlations observed could be attributed to high levels of 

metabolic activity of plants during the flowering period. Moreover, in winter only glucose and 

mannosan showed a correlation with pollen. According to Fernández-González et al. (1993), the 

pollen calendar of León displays high levels of three types (Crupessaceae, Alnus glutinosa and 

Corylus avellane) in winter. This result probably indicates that these pollen types can emit higher 

concentrations of glucose than fructose and sucrose, compared to the emissions of typical spring-

summer pollens. 

The fungal spore, Alternaria, showed significant positive correlations with T, TMin and TMax 

(⁓ 0.4) and a negative relationship with RH (-0.3) between spring and autumn. Fernández et al. 

(1998) described that the Alternaria fungal spore has an optimal growth with mean temperatures 

between 22 and 28 ºC. Furthermore, Rathnayake et al. (2016) reported high positive correlations 

between fungal spore tracers and mean temperature (r = 0.8, p< 0.01), confirming that the 

proliferation of fungi is favoured by high temperatures (around 23 and 27 ºC). Besides, Filali Ben 

Sidel et al. (2015) found that this fungal spore is released under high temperature and low relative 

humidity conditions, corroborating the correlation observed in this study. However, Alternaria only 

correlated significantly with some of the sugars, such as arabitol and SA (in autumn), and 

levoglucosan (in winter), which probably indicates the presence of these sugars in the spore walls, 

and their release once the sporangia have decomposed. 

Considering only rainy days, Alternaria was significantly correlated only with mannitol (r = 

0.50, Table S6), and with Alt a 1 (r = 0.90), which is the most important allergen of spores of this 

genus and that can be released under different environmental conditions (Hong et al., 2005; Skóra et 

al., 2015; Twaroch et al., 2012). Several authors indicated that relative humidity and rainfall in 
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previous days could favour the release and/or growth of fungal spores (Gosselin et al., 2016; 

Rodríguez-Rajo et al., 2005; Van Osdol et al., 2004). Moreover, during rainy days, ribose and 

sucrose also showed a significant correlation with pollen concentrations. This result indicates that 

the release of these saccharides is assisted by rain. 

 

3.5. Sugar compounds vs other chemical species 

 

Species related to biomass burning emissions, such as K, NO3
-
 and OC (Reche et al., 2012; 

Urban et al., 2012; Zhang et al., 2010) were significantly correlated with levoglucosan, mannosan 

and galactosan (0.3 < r < 0.5), suggesting a common origin. These correlations are even higher 

when analysed during autumn, when the Pearson coefficients ranged between 0.4 and 0.8, while in 

spring and summer the anhydrosaccharides do not present a significant relationship with these 

species (Table S5). Fig. 3 shows that the concentrations of levoglucosan, mannosan and galactosan, 

as well as NO3
-
, K and Pb, peak between December and March, when an increase in the use of 

residential heating appliances take place in León. Between September and February, the main 

source contribution of levoglucosan and mannosan is located at NE and SW (Fig. S4), where the 

city centre and the conurbation are located, suggesting a possible contribution from heating devices 

to the emission of these sugar compounds. Arabinose, fructose and glucose are also correlated with 

K, NO3
-
 and OC in autumn. Biomass burning emissions can cause an increase in several sugar 

compounds, such as glucose, arabinose, ribose, arabitol, etc. (Medeiros et al., 2006; Vicente et al., 

2013). The glucose-to-levoglucosan ratio can be used to determine the major source of glucose, 

since levoglucosan is used as a biomass burning tracer. In this study an annual mean of 1.7 and a 

considerable decrease of this ratio in autumn (1.3) and winter (0.5) was observed. Previous studies 

have proposed a value of approximately 4.5 for smoke-free samples, and close to 0.9 for smoke 

samples (Barbaro et al., 2015; Medeiros et al., 2006). In the city of León, the glucose/levoglucosan 

ratios only exceeded the value of 4.5 in 11 days: 8 in spring, 1 in summer and 2 in autumn, 

suggesting that smoke particles are an important source of glucose in the remaining days. 

 

Fig. 3. Daily evolution of K, Pb, NO3
-
 (concentration × 0.1) and the sum of concentrations of sugar 

compounds: levoglucosan, mannosan and galactosan, represented as biomass burning + fossil fuel, 

in León during the sampling campaign. 

 

Anhydrosaccharides, mannosan and levoglucosan, are also correlated with some traffic emission 

tracers such as EC, OC, Cu, Zn, Se, Pb, V and Ni (Calvo et al., 2013; Manousakas et al., 2017), 

with r > 0.2. These correlations are even better when only the autumn is analysed (r > 0.4), whereas 

in the other seasons no significant relationships between these species and anhydrosaccharides were 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

obtained. Although levoglucosan and mannosan are usually associated with biomass burning 

emissions, these results show that they can also be related to fossil fuel and/or traffic emissions. 

Alves et al. (2020) reported that both the shredded tiny tyre chips and the wear particles that form 

from the interaction between tyres and pavement, can release appreciable amounts of levoglucosan. 

Cellulose fibres are mixed with rubber compounds in the tyre vulcanisation process. The 

temperatures reached in the friction between the tyres and the pavements during vehicle running are 

probably enough to convert part of the cellulose fibres into sugars. In autumn, mannosan was 

correlated with As, which is a coal combustion marker (Vejahati et al., 2010). Yan et al. (2018) 

found that coal combustion is a source of anhydrosugars (levoglucosan, mannosan and galactosan) 

and suggested that levoglucosan cannot be used as a distinct source marker for biomass burning in 

cities where coal is still used. León has a coal-fired power station (located 30 km north of the city) 

and domestic coal-fired devices are still used in the province, so coal burning can be a significant 

source of particulate matter in the region. On rainy days, it was also observed that mannosan, 

mannitol, arabinose and fructose correlated with some of the fossil fuel tracers, probably due to an 

increase in traffic flow and/or use of residential heating devices in those days. 

Sulphate and ammonium were correlated with arabitol, mannitol, fructose and levoglucosan in 

spring (r > 0.3; p<0.05), while these ions were highly correlated with mannosan in autumn (r > 0.7; 

p<0.01) and in winter (r > 0.5; p<0.01), suggesting a possible common origin. Ammonium-sulphate 

is formed from the photo-oxidation of SO2 from fossil fuel combustion (Alastuey et al., 2004; Qin 

et al., 2017). In addition, SO4
2-

 and NH4
+
 are formed by the progressive gas-to-particle conversion 

of the components emitted by biomass burning (Balasubramanian et al., 1999). 

Mineral-related elements (Al, Si, K) showed a positive correlation with glucose, sucrose, 

arabitol, myo-inositol and mannitol (0.3 < r < 0.8) in spring. As already mentioned, in spring high 

levels of pollen are registered in León. Thus, the observed correlation is probably related to soil 

resuspension and/or dust intrusions, which can transport high amounts of biological particles 

(Oduber et al., 2019b). 

 

4. Conclusions 

The daily evolution of seventeen sugar compounds in aerosol samples, collected between 9 

March 2016 and 14 March 2017 was analysed. The concentration database of the sugar compounds 

has allowed to determine its natural and/or anthropogenic origin, based on the association with 

other variables, such as several other chemical species, pollen, fungal spores and meteorological 

conditions. During the sampling campaign, the total sugar concentrations in PM10 ranged between 

1.3 and 1052 ng m
-3

, with an annual mean of 64 ± 108 ng m
-3

, accounting for 0.3 % of the PM10 

mass concentration.  
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Pearson correlations between the analysed sugar compounds, meteorological parameters, other 

chemical species and biological tracers (pollen and Alternaria concentrations), showed that: 

- In spring, when a high metabolic activity of plants occurs and temperature increases, sugar 

compounds (glucose, sucrose, 2-methyl-erithritol, mannitol, arabitol and inositol) correlated 

with airborne pollen concentrations. Glucose, sucrose, arabitol, myo-inositol and mannitol 

were also correlated with Al, Si and K, pointing to soil resuspension and/or dust intrusions as 

emission sources in this season. However, the use of glucose and arabinose as a pollen tracer 

should be done with great care, because they can also be related to biomass burning emissions. 

- Between spring and autumn, Alternaria air concentrations increased with rising temperatures 

and decreasing relative humidity, due to the proliferation of fungi. In autumn, arabitol and 

sorbitol + adonitol can be used as tracers for this fungal spore. Moreover, on rainy days, 

mannitol and the allergen Alt a 1, were correlated with Alternaria, which probably indicates 

that mannitol is a good tracer for Alternaria in wet periods. 

- In autumn, lower temperatures cause an increase in the concentrations of levoglucosan, 

mannosan and galactosan, due to the increasing use of residential heating devices. In this 

season, these anhydrosugars and arabinose, fructose and glucose, presented significant 

relationships with K, NO3
-
 and OC (biomass burning tracers). Furthermore, mannosan and 

levoglucosan were correlated with EC, OC, Cu, Zn, Se, Pb, V and Ni, which are traffic and 

fossil fuel combustion markers. In autumn, mannosan was also correlated with As, a coal 

combustion marker. Thus, the selection of these anhydrosaccharides as tracers of biomass 

burning during the cold season, may be overestimating the contribution of that source, due to 

the contribution from other anthropogenic emissions.  

Precipitation can cause an increase in glucose and sucrose concentrations, due to the breakage 

of pollen particles that can release sugar compounds bonded to hundreds of fine size grains. Rainfall 

can also cause an increase in arabitol concentrations owing to the release and growth of fungi. The 

increase of glucose concentration after rain showed a significant positive correlation with mean 

rainfall intensity, swept volume and drop mean size. Concretely, raindrops larger than 3 mm 

increased glucose concentration, while smaller raindrops produced a (non-significant) washing 

effect. The behaviour of fructose was similar for raindrops larger than 4 mm. This fact could 

suggest the existence of a threshold raindrop size that split both processes: washing and release of 

sugar compounds. Nevertheless, further studies are needed in order to validate this hypothesis.  

The study of concentrations and origin of atmospheric bioaerosols is increasingly necessary of 

their health consequences. This work reveals that the association of sugar compounds with 

biological and non-biological tracers and with meteorological conditions is a necessary tool to 

assign the origin of water-soluble organic compounds, helping to assess the bioaerosol levels in the 
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air. To avoid overestimating or wrongly assigning a source, monitoring of multiple parameters and 

the combined assessment of all of them must be made. 
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 The daily evolution of 17 sugar compounds in atmospheric aerosol was studied in León 

 Mannosan and levoglucosan are linked with traffic and fossil fuel combustion markers 

 Precipitation can cause an increase in glucose, sucrose and arabitol concentrations. 

 On rainy days, mannitol is a good tracer for Alternaria 

 Some sugar compounds are correlated with rain intensity, swept volume and drop size  
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