28 research outputs found

    Comparative Validation of Realtime Solar Wind Forecasting Using the UCSD Heliospheric Tomography Model

    Get PDF
    The University of California, San Diego 3D Heliospheric Tomography Model reconstructs the evolution of heliospheric structures, and can make forecasts of solar wind density and velocity up to 72 hours in the future. The latest model version, installed and running in realtime at the Community Coordinated Modeling Center(CCMC), analyzes scintillations of meter wavelength radio point sources recorded by the Solar-Terrestrial Environment Laboratory(STELab) together with realtime measurements of solar wind speed and density recorded by the Advanced Composition Explorer(ACE) Solar Wind Electron Proton Alpha Monitor(SWEPAM).The solution is reconstructed using tomographic techniques and a simple kinematic wind model. Since installation, the CCMC has been recording the model forecasts and comparing them with ACE measurements, and with forecasts made using other heliospheric models hosted by the CCMC. We report the preliminary results of this validation work and comparison with alternative models

    Forecasting Propagation and Evolution of CMEs in an Operational Setting: What Has Been Learned

    Get PDF
    One of the major types of solar eruption, coronal mass ejections (CMEs) not only impact space weather, but also can have significant societal consequences. CMEs cause intense geomagnetic storms and drive fast mode shocks that accelerate charged particles, potentially resulting in enhanced radiation levels both in ions and electrons. Human and technological assets in space can be endangered as a result. CMEs are also the major contributor to generating large amplitude Geomagnetically Induced Currents (GICs), which are a source of concern for power grid safety. Due to their space weather significance, forecasting the evolution and impacts of CMEs has become a much desired capability for space weather operations worldwide. Based on our operational experience at Space Weather Research Center at NASA Goddard Space Flight Center (http://swrc.gsfc.nasa.gov), we present here some of the insights gained about accurately predicting CME impacts, particularly in relation to space weather operations. These include: 1. The need to maximize information to get an accurate handle of three-dimensional (3-D) CME kinetic parameters and therefore improve CME forecast; 2. The potential use of CME simulation results for qualitative prediction of regions of space where solar energetic particles (SEPs) may be found; 3. The need to include all CMEs occurring within a ~24 h period for a better representation of the CME interactions; 4. Various other important parameters in forecasting CME evolution in interplanetary space, with special emphasis on the CME propagation direction. It is noted that a future direction for our CME forecasting is to employ the ensemble modeling approach

    Characteristics of Kinematics of a Coronal Mass Ejection during the 2010 August 1 CME-CME Interaction Event

    Get PDF
    We study the interaction of two successive coronal mass ejections (CMEs) during the 2010 August 1 events using STEREO/SECCHI COR and HI data. We obtain the direction of motion for both CMEs by applying several independent reconstruction methods and find that the CMEs head in similar directions. This provides evidence that a full interaction takes place between the two CMEs that can be observed in the HI1 field-of-view. The full de-projected kinematics of the faster CME from Sun to Earth is derived by combining remote observations with in situ measurements of the CME at 1 AU. The speed profile of the faster CME (CME2; ~1200 km/s) shows a strong deceleration over the distance range at which it reaches the slower, preceding CME (CME1; ~700 km/s). By applying a drag-based model we are able to reproduce the kinematical profile of CME2 suggesting that CME1 represents a magnetohydrodynamic obstacle for CME2 and that, after the interaction, the merged entity propagates as a single structure in an ambient flow of speed and density typical for quiet solar wind conditions. Observational facts show that magnetic forces may contribute to the enhanced deceleration of CME2. We speculate that the increase in magnetic tension and pressure, when CME2 bends and compresses the magnetic field lines of CME1, increases the efficiency of drag.Comment: accepted for Ap

    Solar wind forcing at Mercury: WSA-ENLIL model results

    Get PDF
    Analysis and interpretation of observations from the MESSENGER spacecraft in orbit about Mercury require knowledge of solar wind “forcing” parameters. We have utilized the Wang-Sheeley-Arge (WSA)-ENLIL solar wind modeling tool in order to calculate the values of interplanetary magnetic field (IMF) strength (B), solar wind velocity (V) and density (n), ram pressure (~nV2), cross-magnetosphere electric field (V × B), AlfvĂ©n Mach number (MA), and other derived quantities of relevance for solar wind-magnetosphere interactions. We have compared upstream MESSENGER IMF and solar wind measurements to see how well the ENLIL model results compare. Such parameters as solar wind dynamic pressure are key for determining the Mercury magnetopause standoff distance, for example. We also use the relatively high-time-resolution B-field data from MESSENGER to estimate the strength of the product of the solar wind speed and southward IMF strength (Bs) at Mercury. This product VBs is the electric field that drives many magnetospheric dynamical processes and can be compared with the occurrence of energetic particle bursts within the Mercury magnetosphere. This quantity also serves as input to the global magnetohydrodynamic and kinetic magnetosphere models that are being used to explore magnetospheric and exospheric processes at Mercury. Moreover, this modeling can help assess near-real-time magnetospheric behavior for MESSENGER or other mission analysis and/or ground-based observational campaigns. We demonstrate that this solar wind forcing tool is a crucial step toward bringing heliospheric science expertise to bear on planetary exploration programs

    Improving solar wind modeling at Mercury: Incorporating transient solar phenomena into the WSA‐ENLIL model with the Cone extension

    Get PDF
    Coronal mass ejections (CMEs) and other transient solar phenomena play important roles in magnetospheric and exospheric dynamics. Although a planet may interact only occasionally with the interplanetary consequences of these events, such transient phenomena can result in departures from the background solar wind that often involve more than an order of magnitude greater ram pressure and interplanetary electric field applied to the planetary magnetosphere. For Mercury, an order of magnitude greater ram pressure combined with high AlfvĂ©n speeds and reconnection rates can push the magnetopause essentially to the planet's surface, exposing the surface directly to the solar wind flow. In order to understand how the solar wind interacts with Mercury's magnetosphere and exosphere, previous studies have used the Wang‐Sheeley‐Arge (WSA)‐ENLIL solar wind modeling tool to calculate basic and composite solar wind parameters at Mercury's orbital location. This model forecasts only the background solar wind, however, and does not include major transient events. The Cone extension permits the inclusion of CMEs and related solar wind perturbations and thus enables characterization of the effects of strong solar wind disturbances on the Mercury system. The Cone extension is predicated on the assumption of constant angular and radial velocities of CMEs to integrate these phenomena into the WSA‐ENLIL coupled model. Comparisons of the model results with observations by the MESSENGER spacecraft indicate that the WSA‐ENLIL+Cone model more accurately forecasts total solar wind conditions at Mercury and has greater predictive power for magnetospheric and exospheric processes than the WSA‐ENLIL model alone

    BepiColombo Science Investigations During Cruise and Flybys at the Earth, Venus and Mercury

    Get PDF
    The dual spacecraft mission BepiColombo is the first joint mission between the European Space Agency (ESA) and the Japanese Aerospace Exploration Agency (JAXA) to explore the planet Mercury. BepiColombo was launched from Kourou (French Guiana) on October 20th, 2018, in its packed configuration including two spacecraft, a transfer module, and a sunshield. BepiColombo cruise trajectory is a long journey into the inner heliosphere, and it includes one flyby of the Earth (in April 2020), two of Venus (in October 2020 and August 2021), and six of Mercury (starting from 2021), before orbit insertion in December 2025. A big part of the mission instruments will be fully operational during the mission cruise phase, allowing unprecedented investigation of the different environments that will encounter during the 7-years long cruise. The present paper reviews all the planetary flybys and some interesting cruise configurations. Additional scientific research that will emerge in the coming years is also discussed, including the instruments that can contribute
    corecore