17 research outputs found
Boosting background suppression in the NEXT experiment through Richardson-Lucy deconvolution
Next-generation neutrinoless double beta decay experiments aim for half-life sensitivities of similar to 10(27) yr, requiring suppressing backgrounds to < 1 count/tonne/yr. For this, any extra background rejection handle, beyond excellent energy resolution and the use of extremely radiopure materials, is of utmost importance. The NEXT experiment exploits differences in the spatial ionization patterns of double beta decay and single-electron events to discriminate signal from background. While the former display two Bragg peak dense ionization regions at the opposite ends of the track, the latter typically have only one such feature. Thus, comparing the energies at the track extremes provides an additional rejection tool. The unique combination of the topology-based background discrimination and excellent energy resolution (1% FWHM at the Q-value of the decay) is the distinguishing feature of NEXT. Previous studies demonstrated a topological background rejection factor of 5 when reconstructing electron-positron pairs in the Tl-208 1.6 MeV double escape peak (with Compton events as background), recorded in the NEXT-White demonstrator at the Laboratorio Subterraneo de Canfranc, with 72% signal efficiency. This was recently improved through the use of a deep convolutional neural network to yield a background rejection factor of similar to 10 with 65% signal efficiency. Here, we present a new reconstruction method, based on the Richardson-Lucy deconvolution algorithm, which allows reversing the blurring induced by electron diffusion and electroluminescence light production in the NEXT TPC. The new method yields highly refined 3D images of reconstructed events, and, as a result, significantly improves the topological background discrimination. When applied to real-data 1.6 MeV e(-)e(+) pairs, it leads to a background rejection factor of 27 at 57% signal efficiency.The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the European Union's Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Grant Agreements No. 674896, 690575 and 740055; the Ministerio de Economia y Competitividad and the Ministerio de Ciencia, Innovacion y Universidades of Spain under grants FIS2014-53371-C04, RTI2018-095979, the Severo Ochoa Program grants SEV-2014-0398 and CEX2018-000867-S, and the Maria de Maeztu Program MDM-2016-0692; the Generalitat Valenciana under grants PROMETEO/2016/120 and SEJI/2017/011; the Portuguese FCT under project PTDC/FIS-NUC/2525/2014 and under projects UID/04559/2020 to fund the activities of LIBPhys-UC; the U.S. Department of Energy under contracts No. DE-AC02-06CH11357 (Argonne National Laboratory), DE-AC02-07CH11359 (Fermi National Accelerator Laboratory), DE-FG02-13ER42020 (Texas A&M) and DE-SC0019223/DE-SC0019054 (University of Texas at Arlington); the University of Texas at Arlington (U.S.A.); and the Pazy Foundation (Israel) under grants 877040 and 877041. DGD acknowledges Ramon y Cajal program (Spain) under contract number RYC-2015-18820. JM-A acknowledges support from Fundacion Bancaria "la Caixa" (ID 100010434), grant code LCF/BQ/PI19/11690012. AS acknowledges support from the Kreitman School of Advanced Graduate Studies at Ben-Gurion University.
Documen
Boosting background suppression in the NEXT experiment through Richardson-Lucy deconvolution
Next-generation neutrinoless double beta decay experiments aim for half-life
sensitivities of ~ yr, requiring suppressing backgrounds to <1
count/tonne/yr. For this, any extra background rejection handle, beyond
excellent energy resolution and the use of extremely radiopure materials, is of
utmost importance. The NEXT experiment exploits differences in the spatial
ionization patterns of double beta decay and single-electron events to
discriminate signal from background. While the former display two Bragg peak
dense ionization regions at the opposite ends of the track, the latter
typically have only one such feature. Thus, comparing the energies at the track
extremes provides an additional rejection tool. The unique combination of the
topology-based background discrimination and excellent energy resolution (1%
FWHM at the Q-value of the decay) is the distinguishing feature of NEXT.
Previous studies demonstrated a topological background rejection factor of ~5
when reconstructing electron-positron pairs in the Tl 1.6 MeV double
escape peak (with Compton events as background), recorded in the NEXT-White
demonstrator at the Laboratorio Subterr\'aneo de Canfranc, with 72% signal
efficiency. This was recently improved through the use of a deep convolutional
neural network to yield a background rejection factor of ~10 with 65% signal
efficiency. Here, we present a new reconstruction method, based on the
Richardson-Lucy deconvolution algorithm, which allows reversing the blurring
induced by electron diffusion and electroluminescence light production in the
NEXT TPC. The new method yields highly refined 3D images of reconstructed
events, and, as a result, significantly improves the topological background
discrimination. When applied to real-data 1.6 MeV pairs, it leads to a
background rejection factor of 27 at 57% signal efficiency.Comment: Submitted to JHE
Ba+2 ion trapping using organic submonolayer for ultra-low background neutrinoless double beta detector
If neutrinos are their own antiparticles the otherwise-forbidden nuclear reaction known as neutrinoless double beta decay can occur. The very long lifetime expected for these exceptional events makes its detection a daunting task. In order to conduct an almost background-free experiment, the NEXT collaboration is investigating novel synthetic molecular sensors that may capture the Ba dication produced in the decay of certain Xe isotopes in a high-pressure gas experiment. The use of such molecular detectors immobilized on surfaces must be explored in the ultra-dry environment of a xenon gas chamber. Here, using a combination of highly sensitive surface science techniques in ultra-high vacuum, we demonstrate the possibility of employing the so-called Fluorescent Bicolor Indicator as the molecular component of the sensor. We unravel the ion capture process for these molecular indicators immobilized on a surface and explain the origin of the emission fluorescence shift associated to the ion trapping
A Compact Dication Source for Ba Tagging and Heavy Metal Ion Sensor Development
We present a tunable metal ion beam that delivers controllable ion currents
in the picoamp range for testing of dry-phase ion sensors. Ion beams are formed
by sequential atomic evaporation and single or multiple electron impact
ionization, followed by acceleration into a sensing region. Controllability of
the ionic charge state is achieved through tuning of electrode potentials that
influence the retention time in the ionization region. Barium, lead, and cobalt
samples have been used to test the system, with ion currents identified and
quantified using a quadrupole mass analyzer. Realization of a clean
ion beam within a bench-top system represents an important
technical advance toward the development and characterization of barium tagging
systems for neutrinoless double beta decay searches in xenon gas. This system
also provides a testbed for investigation of novel ion sensing methodologies
for environmental assay applications, with dication beams of Pb and
Cd also demonstrated for this purpose
Boosting background suppression in the NEXT experiment through Richardson-Lucy deconvolution
Next-generation neutrinoless double beta decay experiments aim for half-life sensitivities of ~ 1027 yr, requiring suppressing backgrounds to < 1 count/tonne/yr. For this, any extra background rejection handle, beyond excellent energy resolution and the use of extremely radiopure materials, is of utmost importance. The NEXT experiment exploits differences in the spatial ionization patterns of double beta decay and single-electron events to discriminate signal from background. While the former display two Bragg peak dense ionization regions at the opposite ends of the track, the latter typically have only one such feature. Thus, comparing the energies at the track extremes provides an additional rejection tool. The unique combination of the topology-based background discrimination and excellent energy resolution (1% FWHM at the Q-value of the decay) is the distinguishing feature of NEXT. Previous studies demonstrated a topological background rejection factor of ~ 5 when reconstructing electron-positron pairs in the 208Tl 1.6 MeV double escape peak (with Compton events as background), recorded in the NEXT-White demonstrator at the Laboratorio Subterráneo de Canfranc, with 72% signal efficiency. This was recently improved through the use of a deep convolutional neural network to yield a background rejection factor of ~ 10 with 65% signal efficiency. Here, we present a new reconstruction method, based on the Richardson-Lucy deconvolution algorithm, which allows reversing the blurring induced by electron diffusion and electroluminescence light production in the NEXT TPC. The new method yields highly refined 3D images of reconstructed events, and, as a result, significantly improves the topological background discrimination. When applied to real-data 1.6 MeV e-e+ pairs, it leads to a background rejection factor of 27 at 57% signal efficiency. [Figure not available: see fulltext.]. © 2021, The Author(s)
NEXT-CRAB-0: A High Pressure Gaseous Xenon Time Projection Chamber with a Direct VUV Camera Based Readout
The search for neutrinoless double beta decay () remains one
of the most compelling experimental avenues for the discovery in the neutrino
sector. Electroluminescent gas-phase time projection chambers are well suited
to searches due to their intrinsically precise energy
resolution and topological event identification capabilities. Scalability to
ton- and multi-ton masses requires readout of large-area electroluminescent
regions with fine spatial resolution, low radiogenic backgrounds, and a
scalable data acquisition system. This paper presents a detector prototype that
records event topology in an electroluminescent xenon gas TPC via VUV
image-intensified cameras. This enables an extendable readout of large tracking
planes with commercial devices that reside almost entirely outside of the
active medium.Following further development in intermediate scale
demonstrators, this technique may represent a novel and enlargeable method for
topological event imaging in .Comment: 32 Pages, 22 figure
Enzootic calcinosis in horses grazing <i>Solanum glaucophyllum</i> in Argentina
Solanum glaucophyllum, a toxic plant known for its calcinogenic effects, causes enzootic calcinosis in ruminant and monogastric animals. We describe an outbreak of enzootic calcinosis that occurred in a herd of 110 horses grazing pastureland heavily contaminated with S. glaucophyllum in Buenos Aires province, Argentina. Ten horses developed clinical signs, and 6 horses died. Clinical signs included abnormal gait (stiff-legged action, short strides), stiffness, thoracolumbar kyphosis, reluctance to move, wide stance, chronic weight loss, weakness, recumbency, and difficulty standing. Autopsy of 2 horses revealed severe mineralization of the aorta, pulmonary arteries, heart, and lungs, consistent with enzootic calcinosis. Although horses usually have very selective grazing behavior, under food restriction conditions, they can ingest the toxic plants and can develop the disease. Enzootic calcinosis should be considered as a differential diagnosis in horses grazing S. glaucophyllum–invaded pasturelands with compatible clinical signs and lesions.Facultad de Ciencias Veterinaria
Recommended from our members
Measurement of the Xe 136 two-neutrino double- β -decay half-life via direct background subtraction in NEXT
We report a measurement of the half-life of the Xe136 two-neutrino double-β decay performed with a novel direct-background-subtraction technique. The analysis relies on the data collected with the NEXT-White detector operated with Xe136-enriched and Xe136-depleted xenon, as well as on the topology of double-electron tracks. With a fiducial mass of only 3.5 kg of Xe, a half-life of 2.34-0.46+0.80(stat)-0.17+0.30(sys)×1021yr is derived from the background-subtracted energy spectrum. The presented technique demonstrates the feasibility of unique background-model-independent neutrinoless double-β-decay searches
Recommended from our members
Boosting background suppression in the NEXT experiment through Richardson-Lucy deconvolution
Next-generation neutrinoless double beta decay experiments aim for half-life sensitivities of ∼ 1027 yr, requiring suppressing backgrounds to < 1 count/tonne/yr. For this, any extra background rejection handle, beyond excellent energy resolution and the use of extremely radiopure materials, is of utmost importance. The NEXT experiment exploits differences in the spatial ionization patterns of double beta decay and single-electron events to discriminate signal from background. While the former display two Bragg peak dense ionization regions at the opposite ends of the track, the latter typically have only one such feature. Thus, comparing the energies at the track extremes provides an additional rejection tool. The unique combination of the topology-based background discrimination and excellent energy resolution (1% FWHM at the Q-value of the decay) is the distinguishing feature of NEXT. Previous studies demonstrated a topological background rejection factor of ∼ 5 when reconstructing electron-positron pairs in the 208Tl 1.6 MeV double escape peak (with Compton events as background), recorded in the NEXT-White demonstrator at the Laboratorio Subterráneo de Canfranc, with 72% signal efficiency. This was recently improved through the use of a deep convolutional neural network to yield a background rejection factor of ∼ 10 with 65% signal efficiency. Here, we present a new reconstruction method, based on the Richardson-Lucy deconvolution algorithm, which allows reversing the blurring induced by electron diffusion and electroluminescence light production in the NEXT TPC. The new method yields highly refined 3D images of reconstructed events, and, as a result, significantly improves the topological background discrimination. When applied to real-data 1.6 MeV e−e+ pairs, it leads to a background rejection factor of 27 at 57% signal efficiency. [Figure not available: see fulltext.]