19 research outputs found

    Etude de l'altération de la matrice (U,Pu)O2 du combustible irradiéen conditions de stockage géologique : Approche expérimentale et modélisation géochimique

    Get PDF
    To assess the performance of direct disposal of spent fuel in a nuclear waste repository, researches are performed on the long-term behavior of spent fuel (UOx and MOx) under environmental conditions close to those of the French disposal site. The objective of this study is to determine whether the geochemistry of the Callovian-Oxfordian (COx) clay geological formation and the steel overpack corrosion (producing iron and hydrogen) have an impact on the oxidative dissolution of the (U,Pu)O2 matrix under alpha radiolysis of water.Leaching experiments have been performed with UO2 pellets doped with alpha emitters (Pu) and MIMAS MOx fuel (un-irradiated or spent fuel) to study the effect of the COx groundwater and of the presence of metallic iron upon the oxidative dissolution of these materials induced by the radiolysis of water. Results indicate an inhibiting effect of the COx water on the oxidative dissolution. In the presence of iron, two different behaviors are observed. Under alpha irradiation as the one expected in the geological disposal, the alteration of UO2 matrix and MOx fuel is very strongly inhibited because of the consumption of radiolytic oxidative species by iron in solution leading to the precipitation of Fe(III)-hydroxides on the pellets surface. On the contrary, under a strong beta/gamma irradiation field, alteration tracers indicate that the oxidative dissolution goes on and that uranium concentration in solution is controlled by the solubility of UO2(am,hyd). This is explained by the shifting of the redox front from the fuel surface to the bulk solution not protecting the fuel anymore. The developed geochemical (CHESS) and reactive transport (HYTEC) models correctly represent the main results and occurring mechanisms.Afin d’évaluer les performances du combustible irradiĂ© en situation de stockage gĂ©ologique, des recherches sont menĂ©es sur le comportement Ă  long terme des combustibles irradiĂ©s (UOx et MOx) en conditions environnementales se rapprochant de celles du site de stockage français. L’objectif de cette thĂšse est de dĂ©terminer si la gĂ©ochimie de la couche gĂ©ologique d'argilites du Callovo-Oxfordien (COx) et la corrosion des conteneurs en acier (produisant du fer et de l'hydrogĂšne) ont un impact sur la dissolution oxydante de la matrice (U,Pu)O2 sous radiolyse alpha de l’eau.Des expĂ©riences de lixiviation ont Ă©tĂ© rĂ©alisĂ©es avec des pastilles de UO2 dopĂ©es en Ă©metteurs alpha (Pu) et du combustible MOx MIMAS (non irradiĂ© ou irradiĂ© en rĂ©acteur) afin de mettre en Ă©vidence l’influence de l’eau du COx et de la prĂ©sence de fer mĂ©tallique sur la dissolution oxydante de ces diffĂ©rents matĂ©riaux induite par la radiolyse de l’eau. Les rĂ©sultats indiquent un effet inhibiteur de l’eau du COx sur la dissolution oxydante de la matrice UO2. D’autre part en prĂ©sence de fer, deux rĂ©gimes diffĂ©rents sont observĂ©s. Sous irradiation alpha dominante telle que celle attendue en stockage gĂ©ologique, la dissolution oxydante de la matrice UO2 et du combustible MOx est trĂšs fortement inhibĂ©e du fait de la consommation des espĂšces radiolytiques oxydantes par le fer en solution avec prĂ©cipitation d’hydroxydes de Fe(III) Ă  la surface des pastilles. En revanche, sous forte irradiation beta/gamma comme dans le cas du combustible irradiĂ©, les traceurs de l’altĂ©ration indiquent que celle-ci se poursuit en prĂ©sence de fer tandis que la concentration en uranium en solution est contrĂŽlĂ©e par la solubilitĂ© de UO2(am,hyd). Ceci est expliquĂ© par le dĂ©placement du front redox de la surface du combustible vers la solution homogĂšne ne protĂ©geant plus le combustible. Les modĂšles gĂ©ochimique (code CHESS) et de transport rĂ©actif (code HYTEC) dĂ©veloppĂ©s reprĂ©sentent correctement les principaux rĂ©sultats et mĂ©canismes mis en jeu

    Study of (U,Pu)O2 spent fuel matrix alteration under geological disposal conditions : Experimental approach and geochemical modeling

    No full text
    Afin d’évaluer les performances du combustible irradiĂ© en situation de stockage gĂ©ologique, des recherches sont menĂ©es sur le comportement Ă  long terme des combustibles irradiĂ©s (UOx et MOx) en conditions environnementales se rapprochant de celles du site de stockage français. L’objectif de cette thĂšse est de dĂ©terminer si la gĂ©ochimie de la couche gĂ©ologique d'argilites du Callovo-Oxfordien (COx) et la corrosion des conteneurs en acier (produisant du fer et de l'hydrogĂšne) ont un impact sur la dissolution oxydante de la matrice (U,Pu)O2 sous radiolyse alpha de l’eau.Des expĂ©riences de lixiviation ont Ă©tĂ© rĂ©alisĂ©es avec des pastilles de UO2 dopĂ©es en Ă©metteurs alpha (Pu) et du combustible MOx MIMAS (non irradiĂ© ou irradiĂ© en rĂ©acteur) afin de mettre en Ă©vidence l’influence de l’eau du COx et de la prĂ©sence de fer mĂ©tallique sur la dissolution oxydante de ces diffĂ©rents matĂ©riaux induite par la radiolyse de l’eau. Les rĂ©sultats indiquent un effet inhibiteur de l’eau du COx sur la dissolution oxydante de la matrice UO2. D’autre part en prĂ©sence de fer, deux rĂ©gimes diffĂ©rents sont observĂ©s. Sous irradiation alpha dominante telle que celle attendue en stockage gĂ©ologique, la dissolution oxydante de la matrice UO2 et du combustible MOx est trĂšs fortement inhibĂ©e du fait de la consommation des espĂšces radiolytiques oxydantes par le fer en solution avec prĂ©cipitation d’hydroxydes de Fe(III) Ă  la surface des pastilles. En revanche, sous forte irradiation beta/gamma comme dans le cas du combustible irradiĂ©, les traceurs de l’altĂ©ration indiquent que celle-ci se poursuit en prĂ©sence de fer tandis que la concentration en uranium en solution est contrĂŽlĂ©e par la solubilitĂ© de UO2(am,hyd). Ceci est expliquĂ© par le dĂ©placement du front redox de la surface du combustible vers la solution homogĂšne ne protĂ©geant plus le combustible. Les modĂšles gĂ©ochimique (code CHESS) et de transport rĂ©actif (code HYTEC) dĂ©veloppĂ©s reprĂ©sentent correctement les principaux rĂ©sultats et mĂ©canismes mis en jeu.To assess the performance of direct disposal of spent fuel in a nuclear waste repository, researches are performed on the long-term behavior of spent fuel (UOx and MOx) under environmental conditions close to those of the French disposal site. The objective of this study is to determine whether the geochemistry of the Callovian-Oxfordian (COx) clay geological formation and the steel overpack corrosion (producing iron and hydrogen) have an impact on the oxidative dissolution of the (U,Pu)O2 matrix under alpha radiolysis of water.Leaching experiments have been performed with UO2 pellets doped with alpha emitters (Pu) and MIMAS MOx fuel (un-irradiated or spent fuel) to study the effect of the COx groundwater and of the presence of metallic iron upon the oxidative dissolution of these materials induced by the radiolysis of water. Results indicate an inhibiting effect of the COx water on the oxidative dissolution. In the presence of iron, two different behaviors are observed. Under alpha irradiation as the one expected in the geological disposal, the alteration of UO2 matrix and MOx fuel is very strongly inhibited because of the consumption of radiolytic oxidative species by iron in solution leading to the precipitation of Fe(III)-hydroxides on the pellets surface. On the contrary, under a strong beta/gamma irradiation field, alteration tracers indicate that the oxidative dissolution goes on and that uranium concentration in solution is controlled by the solubility of UO2(am,hyd). This is explained by the shifting of the redox front from the fuel surface to the bulk solution not protecting the fuel anymore. The developed geochemical (CHESS) and reactive transport (HYTEC) models correctly represent the main results and occurring mechanisms

    Effect of metallic iron on the oxidative dissolution of UO2 doped with a radioactive alpha emitter in synthetic Callovian-Oxfordian groundwater

    No full text
    International audienceIn the hypothesis of direct disposal of spent fuel in a geological nuclear waste repository, interactions between the fuel mainly composed of UO2 and its environment must be understood. The dissolution rate of the UO2 matrix, which depends on the redox conditions on the fuel surface, will have a major impact on the release of radionuclides into the environment. The reducing conditions expected for a geological disposal situation would appear to be favorable as regards the solubility and stability of the UO2 matrix, but may be disturbed on the surface of irradiated fuel. In particular, the local redox conditions will result from a competition between the radiolysis effects of water under alpha irradiation (simultaneously producing oxidizing species like H2O2, hydrogen peroxide, and reducing species like H2, hydrogen) and those of redox active species from the environment. In particular, Fe2+, a strongly reducing aqueous species coming from the corrosion of the iron canister or from the host rock, could influence the dissolution of the fuel matrix. The effect of iron on the oxidative dissolution of UO2 was thus investigated under the conditions of the French disposal site, a Callovian-Oxfordian clay formation chosen by the French National Radioactive Waste Management Agency (Andra), here tested under alpha irradiation. For this study, UO2 fuel pellets doped with a radioactive alpha emitter (238/239Pu) were leached in synthetic Callovian-Oxfordian groundwater (representative of the French waste disposal site groundwater) in the presence of a metallic iron foil to simulate the steel canister. The pellets had varying levels of alpha activity, in order to modulate the concentrations of species produced by water radiolysis on the surface and to simulate the activity of aged spent fuel after 50 and 10,000 years of alpha radioactivity decay. The experimental data showed that whatever the sample alpha radioactivity, the presence of iron inhibits the oxidizing dissolution of UO2 and leads to low uranium concentrations (between 4 × 10−10 and 4 × 10−9 M), through a reactional mechanism located in the very first microns of the UO2/water reactional interface. The mechanism involves consumption of oxidizing species, in particular of H2O2 by Fe2+ at the precise place where these species are produced, and is accompanied by the precipitation of an akaganeite-type Fe3+ hydroxide on the surface. The higher the radioactivity of the samples, the greater the precipitation induced. Modeling has been developed, coupling chemistry with transport and based on the main reactional mechanisms identified, which enables accurate reproduction of the mineralogy of the system under study, giving the nature of the phases under observation as well as the location of their precipitation. Obviously without excluding a potential contribution from the hydrogen produced by the anoxic corrosion of the iron foil, this study has shown that iron plays a major role in this oxidizing dissolution inhibition process for the system investigated (localized alpha radiolysis). This inhibitor effect associated with iron is therefore strongly dependent on the location of the redox front, which is found on the surface in the case of alpha irradiation UO2/water reactional interface
    corecore