97 research outputs found

    Bayesian mapping of pulmonary tuberculosis in Antananarivo, Madagascar

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tuberculosis (TB), an infectious disease caused by the <it>Mycobacterium tuberculosis </it>is endemic in Madagascar. The capital, Antananarivo is the most seriously affected area. TB had a non-random spatial distribution in this setting, with clustering in the poorer areas. The aim of this study was to explore this pattern further by a Bayesian approach, and to measure the associations between the spatial variation of TB risk and national control program indicators for all neighbourhoods.</p> <p>Methods</p> <p>Combination of a Bayesian approach and a generalized linear mixed model (GLMM) was developed to produce smooth risk maps of TB and to model relationships between TB new cases and national TB control program indicators. The TB new cases were collected from records of the 16 Tuberculosis Diagnostic and Treatment Centres (DTC) of the city from 2004 to 2006. And five TB indicators were considered in the analysis: number of cases undergoing retreatment, number of patients with treatment failure and those suffering relapse after the completion of treatment, number of households with more than one case, number of patients lost to follow-up, and proximity to a DTC.</p> <p>Results</p> <p>In Antananarivo, 43.23% of the neighbourhoods had a standardized incidence ratio (SIR) above 1, of which 19.28% with a TB risk significantly higher than the average. Identified high TB risk areas were clustered and the distribution of TB was found to be associated mainly with the number of patients lost to follow-up (SIR: 1.10, CI 95%: 1.02-1.19) and the number of households with more than one case (SIR: 1.13, CI 95%: 1.03-1.24).</p> <p>Conclusion</p> <p>The spatial pattern of TB in Antananarivo and the contribution of national control program indicators to this pattern highlight the importance of the data recorded in the TB registry and the use of spatial approaches for assessing the epidemiological situation for TB. Including these variables into the model increases the reproducibility, as these data are already available for individual DTCs. These findings may also be useful for guiding decisions related to disease control strategies.</p

    Analysis of the geographic distribution of HFRS in Liaoning Province between 2000 and 2005

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hemorrhagic fever with renal syndrome (HFRS) is endemic in Liaoning Province, China, and this province was the most serious area affected by HFRS during 2004 to 2005. In this study, we conducted a spatial analysis of HFRS cases with the objective to determine the distribution of HFRS cases and to identify key areas for future public health planning and resource allocation in Liaoning Province.</p> <p>Methods</p> <p>The annual average incidence at the county level was calculated using HFRS cases reported between 2000 and 2005 in Liaoning Province. GIS-based spatial analyses were conducted to detect spatial distribution and clustering of HFRS incidence at the county level, and the difference of relative humidity and forestation between the cluster areas and non-cluster areas was analyzed.</p> <p>Results</p> <p>Spatial distribution of HFRS cases in Liaoning Province from 2000 to 2005 was mapped at the county level to show crude incidence, excess hazard, and spatial smoothed incidence. Spatial cluster analysis suggested 16 and 41 counties were at increased risk for HFRS (p < 0.01) with the maximum spatial cluster sizes at ≤ 50% and ≤ 30% of the total population, respectively, and the analysis showed relative humidity and forestation in the cluster areas were significantly higher than in other areas.</p> <p>Conclusion</p> <p>Some clustering of HFRS cases in Liaoning Province may be etiologically linked. There was strong evidence some HFRS cases in Liaoning Province formed clusters, but the mechanism underlying it remains unknown. In this study we found the clustering was consistent with the relative humidity and amount of forestation, and showed data indicating there may be some significant relationships.</p

    Identifying Unique Neighborhood Characteristics to Guide Health Planning for Stroke and Heart Attack: Fuzzy Cluster and Discriminant Analyses Approaches

    Get PDF
    Socioeconomic, demographic, and geographic factors are known determinants of stroke and myocardial infarction (MI) risk. Clustering of these factors in neighborhoods needs to be taken into consideration during planning, prioritization and implementation of health programs intended to reduce disparities. Given the complex and multidimensional nature of these factors, multivariate methods are needed to identify neighborhood clusters of these determinants so as to better understand the unique neighborhood profiles. This information is critical for evidence-based health planning and service provision. Therefore, this study used a robust multivariate approach to classify neighborhoods and identify their socio-demographic characteristics so as to provide information for evidence-based neighborhood health planning for stroke and MI.The study was performed in East Tennessee Appalachia, an area with one of the highest stroke and MI risks in USA. Robust principal component analysis was performed on neighborhood (census tract) socioeconomic and demographic characteristics, obtained from the US Census, to reduce the dimensionality and influence of outliers in the data. Fuzzy cluster analysis was used to classify neighborhoods into Peer Neighborhoods (PNs) based on their socioeconomic and demographic characteristics. Nearest neighbor discriminant analysis and decision trees were used to validate PNs and determine the characteristics important for discrimination. Stroke and MI mortality risks were compared across PNs. Four distinct PNs were identified and their unique characteristics and potential health needs described. The highest risk of stroke and MI mortality tended to occur in less affluent PNs located in urban areas, while the suburban most affluent PNs had the lowest risk.Implementation of this multivariate strategy provides health planners useful information to better understand and effectively plan for the unique neighborhood health needs and is important in guiding resource allocation, service provision, and policy decisions to address neighborhood health disparities and improve population health

    Neighborhood disparities in stroke and myocardial infarction mortality: a GIS and spatial scan statistics approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Stroke and myocardial infarction (MI) are serious public health burdens in the US. These burdens vary by geographic location with the highest mortality risks reported in the southeastern US. While these disparities have been investigated at state and county levels, little is known regarding disparities in risk at lower levels of geography, such as neighborhoods. Therefore, the objective of this study was to investigate spatial patterns of stroke and MI mortality risks in the East Tennessee Appalachian Region so as to identify neighborhoods with the highest risks.</p> <p>Methods</p> <p>Stroke and MI mortality data for the period 1999-2007, obtained free of charge upon request from the Tennessee Department of Health, were aggregated to the census tract (neighborhood) level. Mortality risks were age-standardized by the direct method. To adjust for spatial autocorrelation, population heterogeneity, and variance instability, standardized risks were smoothed using Spatial Empirical Bayesian technique. Spatial clusters of high risks were identified using spatial scan statistics, with a discrete Poisson model adjusted for age and using a 5% scanning window. Significance testing was performed using 999 Monte Carlo permutations. Logistic models were used to investigate neighborhood level socioeconomic and demographic predictors of the identified spatial clusters.</p> <p>Results</p> <p>There were 3,824 stroke deaths and 5,018 MI deaths. Neighborhoods with significantly high mortality risks were identified. Annual stroke mortality risks ranged from 0 to 182 per 100,000 population (median: 55.6), while annual MI mortality risks ranged from 0 to 243 per 100,000 population (median: 65.5). Stroke and MI mortality risks exceeded the state risks of 67.5 and 85.5 in 28% and 32% of the neighborhoods, respectively. Six and ten significant (p < 0.001) spatial clusters of high risk of stroke and MI mortality were identified, respectively. Neighborhoods belonging to high risk clusters of stroke and MI mortality tended to have high proportions of the population with low education attainment.</p> <p>Conclusions</p> <p>These methods for identifying disparities in mortality risks across neighborhoods are useful for identifying high risk communities and for guiding population health programs aimed at addressing health disparities and improving population health.</p

    A Spatial Cluster Analysis of Tractor Overturns in Kentucky from 1960 to 2002

    Get PDF
    Agricultural tractor overturns without rollover protective structures are the leading cause of farm fatalities in the United States. To our knowledge, no studies have incorporated the spatial scan statistic in identifying high-risk areas for tractor overturns. The aim of this study was to determine whether tractor overturns cluster in certain parts of Kentucky and identify factors associated with tractor overturns.A spatial statistical analysis using Kulldorff's spatial scan statistic was performed to identify county clusters at greatest risk for tractor overturns. A regression analysis was then performed to identify factors associated with tractor overturns.The spatial analysis revealed a cluster of higher than expected tractor overturns in four counties in northern Kentucky (RR = 2.55) and 10 counties in eastern Kentucky (RR = 1.97). Higher rates of tractor overturns were associated with steeper average percent slope of pasture land by county (p = 0.0002) and a greater percent of total tractors with less than 40 horsepower by county (p<0.0001).This study reveals that geographic hotspots of tractor overturns exist in Kentucky and identifies factors associated with overturns. This study provides policymakers a guide to targeted county-level interventions (e.g., roll-over protective structures promotion interventions) with the intention of reducing tractor overturns in the highest risk counties in Kentucky

    Spatial variation and hot-spots of district level diarrhea incidences in Ghana: 2010–2014

    Get PDF
    Background: Diarrhea is a public health menace, especially in developing countries. Knowledge of the biological and anthropogenic characteristics is abundant. However, little is known about its spatial patterns especially in developing countries like Ghana. This study aims to map and explore the spatial variation and hot-spots of district level diarrhea incidences in Ghana. Methods: Data on district level incidences of diarrhea from 2010 to 2014 were compiled together with population data. We mapped the relative risks using empirical Bayesian smoothing. The spatial scan statistics was used to detect and map spatial and space-Time clusters. Logistic regression was used to explore the relationship between space-Time clustering and urbanization strata, i.e. rural, peri-urban, and urban districts. Results: We observed substantial variation in the spatial distribution of the relative risk. There was evidence of significant spatial clusters with most of the excess incidences being long-Term with only a few being emerging clusters. Space-Time clustering was found to be more likely to occur in peri-urban districts than in rural and urban districts. Conclusion: This study has revealed that the excess incidences of diarrhea is spatially clustered with peri-urban districts showing the greatest risk of space-Time clustering. More attention should therefore be paid to diarrhea in peri-urban districts. These findings also prompt public health officials to integrate disease mapping and cluster analyses in developing location specific interventions for reducing diarrhea

    Spatial analysis of hemorrhagic fever with renal syndrome in China

    Get PDF
    BACKGROUND: Hemorrhagic fever with renal syndrome (HFRS) is endemic in many provinces with high incidence in mainland China, although integrated intervention measures including rodent control, environment management and vaccination have been implemented for over ten years. In this study, we conducted a geographic information system (GIS)-based spatial analysis on distribution of HFRS cases for the whole country with an objective to inform priority areas for public health planning and resource allocation. METHODS: Annualized average incidence at a county level was calculated using HFRS cases reported during 1994–1998 in mainland China. GIS-based spatial analyses were conducted to detect spatial autocorrelation and clusters of HFRS incidence at the county level throughout the country. RESULTS: Spatial distribution of HFRS cases in mainland China from 1994 to 1998 was mapped at county level in the aspects of crude incidence, excess hazard and spatial smoothed incidence. The spatial distribution of HFRS cases was nonrandom and clustered with a Moran's I = 0.5044 (p = 0.001). Spatial cluster analyses suggested that 26 and 39 areas were at increased risks of HFRS (p < 0.01) with maximum spatial cluster sizes of ≤ 20% and ≤ 10% of the total population, respectively. CONCLUSION: The application of GIS, together with spatial statistical techniques, provide a means to quantify explicit HFRS risks and to further identify environmental factors responsible for the increasing disease risks. We demonstrate a new perspective of integrating such spatial analysis tools into the epidemiologic study and risk assessment of HFRS

    Development of a local antibiogram for a teaching hospital in Ghana

    Get PDF
    BACKGROUND: Antimicrobial resistance threatens adequate healthcare provision against infectious diseases. Antibiograms, combined with patient clinical history, enable clinicians and pharmacists to select the best empirical treatments prior to culture results. OBJECTIVES: To develop a local antibiogram for the Ho Teaching Hospital. METHODS: This was a retrospective cross-sectional study, using data collected on bacterial isolates from January-December 2021. Samples from urine, stool, sputum, blood, and cerebrospinal fluid (CSF) were considered as well as, aspirates and swabs from wound, ears and vagina of patients. Bacteria were cultured on both enrichment and selective media including blood agar supplemented with 5% sheep blood and MacConkey agar, and identified by both the VITEK 2 system and routine biochemical tests. Data on routine culture and sensitivity tests performed on bacterial isolates from patient samples were retrieved from the hospital's health information system. Data were then entered into and analysed using WHONET. RESULTS: In all, 891 pathogenic microorganisms were isolated from 835 patients who had positive culture tests. Gram-negative isolates accounted for about 77% of the total bacterial species. Escherichia coli (246), Pseudomonas spp. (180), Klebsiella spp. (168), Citrobacter spp. (101) and Staphylococcus spp. (78) were the five most isolated pathogens. Most of the bacterial isolates showed high resistance (>70%) to ampicillin, piperacillin, ceftazidime, ceftriaxone, cefotaxime, penicillin G, amoxicillin, amoxicillin/clavulanic acid, ticarcillin/clavulanic acid and trimethoprim/sulfamethoxazole. CONCLUSIONS: The isolates from the various samples were not susceptible to most of the antibiotics used in the study. The study reveals the resistance patterns of E. coli and Klebsiella spp. to some antibiotics on the WHO 'Watch' and 'Reserve' lists. Using antibiograms as part of antimicrobial stewardship programmes would optimize antibiotic use and preserve their efficacy

    Space-time clustering of childhood malaria at the household level: a dynamic cohort in a Mali village

    Get PDF
    BACKGROUND: Spatial and temporal heterogeneities in the risk of malaria have led the WHO to recommend fine-scale stratification of the epidemiological situation, making it possible to set up actions and clinical or basic researches targeting high-risk zones. Before initiating such studies it is necessary to define local patterns of malaria transmission and infection (in time and in space) in order to facilitate selection of the appropriate study population and the intervention allocation. The aim of this study was to identify, spatially and temporally, high-risk zones of malaria, at the household level (resolution of 1 to 3 m). METHODS: This study took place in a Malian village with hyperendemic seasonal transmission as part of Mali-Tulane Tropical Medicine Research Center (NIAID/NIH). The study design was a dynamic cohort (22 surveys, from June 1996 to June 2001) on about 1300 children (<12 years) distributed between 173 households localized by GPS. We used the computed parasitological data to analyzed levels of Plasmodium falciparum, P. malariae and P. ovale infection and P. falciparum gametocyte carriage by means of time series and Kulldorff's scan statistic for space-time cluster detection. RESULTS: The time series analysis determined that malaria parasitemia (primarily P. falciparum) was persistently present throughout the population with the expected seasonal variability pattern and a downward temporal trend. We identified six high-risk clusters of P. falciparum infection, some of which persisted despite an overall tendency towards a decrease in risk. The first high-risk cluster of P. falciparum infection (rate ratio = 14.161) was detected from September 1996 to October 1996, in the north of the village. CONCLUSION: This study showed that, although infection proportions tended to decrease, high-risk zones persisted in the village particularly near temporal backwaters. Analysis of this heterogeneity at the household scale by GIS methods lead to target preventive actions more accurately on the high-risk zones identified. This mapping of malaria risk makes it possible to orient control programs, treating the high-risk zones identified as a matter of priority, and to improve the planning of intervention trials or research studies on malaria
    • …
    corecore