336 research outputs found
Proton tracking in a high-granularity Digital Tracking Calorimeter for proton CT purposes
Radiation therapy with protons as of today utilizes information from x-ray CT
in order to estimate the proton stopping power of the traversed tissue in a
patient. The conversion from x-ray attenuation to proton stopping power in
tissue introduces range uncertainties of the order of 2-3% of the range,
uncertainties that are contributing to an increase of the necessary planning
margins added to the target volume in a patient. Imaging methods and
modalities, such as Dual Energy CT and proton CT, have come into consideration
in the pursuit of obtaining an as good as possible estimate of the proton
stopping power. In this study, a Digital Tracking Calorimeter is benchmarked
for proof-of-concept for proton CT purposes. The Digital Tracking Calorimeteris
applied for reconstruction of the tracks and energies of individual high energy
protons. The presented prototype forms the basis for a proton CT system using a
single technology for tracking and calorimetry. This advantage simplifies the
setup and reduces the cost of a proton CT system assembly, and it is a unique
feature of the Digital Tracking Calorimeter. Data from the AGORFIRM beamline at
KVI-CART in Groningen in the Netherlands and Monte Carlo simulation results are
used to in order to develop a tracking algorithm for the estimation of the
residual ranges of a high number of concurrent proton tracks. The range of the
individual protons can at present be estimated with a resolution of 4%. The
readout system for this prototype is able to handle an effective proton
frequency of 1 MHz by using 500 concurrent proton tracks in each readout frame,
which is at the high end range of present similar prototypes. A future further
optimized prototype will enable a high-speed and more accurate determination of
the ranges of individual protons in a therapeutic beam.Comment: 21 pages, 8 figure
Climate change effects on human health in a gender perspective: some trends in Arctic research
Background: Climate change and environmental pollution have become pressing concerns for the peoples in the Arctic region. Some researchers link climate change, transformations of living conditions and human health. A number of studies have also provided data on differentiating effects of climate change on women's and men's well-being and health. Objective: To show how the issues of climate and environment change, human health and gender are addressed in current research in the Arctic. The main purpose of this article is not to give a full review but to draw attention to the gaps in knowledge and challenges in the Arctic research trends on climate change, human health and gender. Methods: A broad literature search was undertaken using a variety of sources from natural, medical, social science and humanities. The focus was on the keywords. Results: Despite the evidence provided by many researchers on differentiating effects of climate change on well-being and health of women and men, gender perspective remains of marginal interest in climate change, environmental and health studies. At the same time, social sciences and humanities, and gender studies in particular, show little interest towards climate change impacts on human health in the Arctic. As a result, we still observe the division of labour between disciplines, the disciplinary-bound pictures of human development in the Arctic and terminology confusion. Conclusion: Efforts to bring in a gender perspective in the Arctic research will be successful only when different disciplines would work together. Multidisciplinary research is a way to challenge academic/disciplinary homogeneity and their boundaries, to take advantage of the diversity of approaches and methods in production of new integrated knowledge. Cooperation and dialogue across disciplines will help to develop adequate indicators for monitoring human health and elaborating efficient policies and strategies to the benefit of both women and men in the Arctic
Mass Measurements near N=Z
Abstract After an outline of the physics motivations, that illustrate why we think it is important to measure masses in the region N≈Z, we report on on experiments performed at Ganil. An experiment aimed at measuring the masses of proton-rich nuclei in the mass region A ≈ 60–80 has been performed, using a direct time-of-flight technique in conjunction with SISSI and the SPEG spectrometer at GANIL. The nuclei were produced via the fragmentation of a 78 Kr beam (73 meV/nucleon). A novel technique for the purification of the secondary beams, based on the stripping of the ions and using the α and the SPEG spectrometers, was succesfully checked. It allows for good selectivity without altering the beam quality. Secondary ions of 100 Ag, 100 Cd, 100 In and 100 Sn were produced via the fusion-evaporation reaction 50 Cr + 58 Ni at an energy of 5.1 MeV/nucleon, and were accelerated simultaneously in the second cyclotron of GANIL (CSS2). About 10 counts were observed from the production and acceleration of 100 Sn 22+ . The masses of 100 Cd, 100 In and 100 Sn were measured with respect to 100 Ag using the CSS2 cyclotron, with precisions of 2 × 10 −6 , 3 × 10 −6 and 10 −5 respectively
The effect of age and unilateral leg immobilisation for 2 weeks on substrate ulilisation during moderate-intensity exercise in human skeletal muscle
Age and inactivity have been associated with intramuscular triglyceride (IMTG) accumulation. Here, we attempt to disentangle these factors by studying the effect of 2 weeks of unilateral leg immobilization on substrate utilization across the legs during moderate-intensity exercise in young (n = 17; 23 ± 1 years old) and older men (n = 15; 68 ± 1 years old), while the contralateral leg served as the control. After immobilization, the participants performed two-legged isolated knee-extensor exercise at 20±1W(_50% maximalwork capacity) for 45 min with catheters inserted in the brachial artery and both femoral veins.Biopsy samples obtained from vastus lateralis muscles of both legs before and after exercise were used for analysis of substrates, protein content and enzyme activities. During exercise, leg substrate utilization (respiratoryquotient) did not differ between groups or legs. Leg fatty acid uptake was greater in older than in young men, and although young men demonstrated net leg glycerol release during exercise, older men showed net glycerol uptake. At baseline, IMTG, muscle pyruvate dehydrogenase complex activity and the protein content of adipose triglyceride lipase, acetyl-CoA carboxylase 2 and AMP-activated protein kinase (AMPK)γ3 were higher in young than in older men. Furthermore, adipose triglyceride lipase, plasma membrane-associated fatty acid binding protein and AMPKγ3 subunit protein contents were lower and IMTG was higher in the immobilized than the contralateral leg in young and older men. Thus, immobilization and age did not affect substrate choice (respiratory quotient) during moderate exercise, but the whole-leg and molecular differences in fatty acid mobilization could explain the age- and immobilization-induced IMTG accumulation
Levels of Polychlorinated Biphenyls (PCBs) and Three Organochlorine Pesticides in Fish from the Aleutian Islands of Alaska
Persistent organic pollutants (POPs), including polychlorinated biphenyls (PCBs) and chlorinated pesticides, have been shown to have many adverse human health effects. These contaminants therefore may pose a risk to Alaska Natives that follow a traditional diet high in marine mammals and fish, in which POPs bioaccumulate.This study examined the levels of PCBs and three pesticides [p, p'-DDE, mirex, and hexachlorobenzene (HCB)] in muscle tissue from nine fish species from several locations around the Aleutian Islands of Alaska. The highest median PCB level was found in rock sole (Lepidopsetta bilineata, 285 ppb, wet weight), while the lowest level was found in rock greenling (Hexagrammos lagocephalus, 104 ppb, wet weight). Lipid adjusted PCB values were also calculated and significant interspecies differences were found. Again, rock sole had the highest level (68,536 ppb, lipid weight). Concerning the PCB congener patterns, the more highly chlorinated congeners were most common as would be expected due to their greater persistence. Among the pesticides, p, p'-DDE generally dominated, and the highest level was found in sockeye salmon (Oncorhynchus nerka, 6.9 ppb, wet weight). The methodology developed by U.S. Environmental Protection Agency (USEPA) was used to calculate risk-based consumption limits for the analyzed fish species. For cancer health endpoints for PCBs, all species would trigger strict advisories of between two and six meals per year, depending upon species. For noncancer effects by PCBs, advisories of between seven and twenty-two meals per year were triggered. None of the pesticides triggered consumption limits.The fish analyzed, mainly from Adak, contain significant concentrations of POPs, in particular PCBs, which raises the question whether these fish are safe to eat, particularly for sensitive populations. However when assessing any risk of the traditional diet, one must also consider the many health and cultural benefits from eating fish
International home economics
The conference was planned to serve the interests of those who wish to work in home economics programs abroad and those who are concerned with the education of international students in the universities and colleges of the United States. Approximately 165 home economists from other states and from foreign countries I including the African and Latin American countries I participated in the conference.https://lib.dr.iastate.edu/card_reports/1026/thumbnail.jp
MOLECULAR STRUCTURE OF THE EPIDERMAL EXTRACELLULAR SPACES
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65966/1/j.1365-4362.1979.tb01946.x.pd
Assessing the distribution of volatile organic compounds using land use regression in Sarnia, "Chemical Valley", Ontario, Canada
<p>Abstract</p> <p>Background</p> <p>Land use regression (LUR) modelling is proposed as a promising approach to meet some of the challenges of assessing the intra-urban spatial variability of ambient air pollutants in urban and industrial settings. However, most of the LUR models to date have focused on nitrogen oxides and particulate matter. This study aimed at developing LUR models to predict BTEX (benzene, toluene, ethylbenzene, m/p-xylene and o-xylene) concentrations in Sarnia, 'Chemical Valley', Ontario, and model the intra-urban variability of BTEX compounds in the city for a community health study.</p> <p>Method</p> <p>Using Organic Vapour Monitors, pollutants were monitored at 39 locations across the city of Sarnia for 2 weeks in October 2005. LUR models were developed to generate predictor variables that best estimate BTEX concentrations.</p> <p>Results</p> <p>Industrial area, dwelling counts, and highways adequately explained most of the variability of BTEX concentrations (<it>R</it><sup>2</sup>: 0.78 – 0.81). Correlations between measured BTEX compounds were high (> 0.75). Although most of the predictor variables (e.g. land use) were similar in all the models, their individual contributions to the models were different.</p> <p>Conclusion</p> <p>Yielding potentially different health effects than nitrogen oxides and particulate matter, modelling other air pollutants is essential for a better understanding of the link between air pollution and health. The LUR models developed in these analyses will be used for estimating outdoor exposure to BTEX for a larger community health study aimed at examining the determinants of health in Sarnia.</p
- …