298 research outputs found
Macrophage-derived human resistin is induced in multiple helminth infections and promotes inflammatory monocytes and increased parasite burden.
Parasitic helminth infections can be associated with lifelong morbidity such as immune-mediated organ failure. A better understanding of the host immune response to helminths could provide new avenues to promote parasite clearance and/or alleviate infection-associated morbidity. Murine resistin-like molecules (RELM) exhibit pleiotropic functions following helminth infection including modulating the host immune response; however, the relevance of human RELM proteins in helminth infection is unknown. To examine the function of human resistin (hResistin), we utilized transgenic mice expressing the human resistin gene (hRetnTg+). Following infection with the helminth Nippostrongylus brasiliensis (Nb), hResistin expression was significantly upregulated in infected tissue. Compared to control hRetnTg- mice, hRetnTg+ mice suffered from exacerbated Nb-induced inflammation characterized by weight loss and increased infiltration of inflammatory monocytes in the lung, along with elevated Nb egg burdens and delayed parasite expulsion. Genome-wide transcriptional profiling of the infected tissue revealed that hResistin promoted expression of proinflammatory cytokines and genes downstream of toll-like receptor signaling. Moreover, hResistin preferentially bound lung monocytes, and exogenous treatment of mice with recombinant hResistin promoted monocyte recruitment and proinflammatory cytokine expression. In human studies, increased serum resistin was associated with higher parasite load in individuals infected with soil-transmitted helminths or filarial nematode Wuchereria bancrofti, and was positively correlated with proinflammatory cytokines. Together, these studies identify human resistin as a detrimental factor induced by multiple helminth infections, where it promotes proinflammatory cytokines and impedes parasite clearance. Targeting the resistin/proinflammatory cytokine immune axis may provide new diagnostic or treatment strategies for helminth infection and associated immune-mediated pathology
IPSE, an abundant egg-secreted protein of the carcinogenic helminth Schistosoma haematobium, promotes proliferation of bladder cancer cells and angiogenesis
Background
Schistosoma haematobium, the helminth causing urogenital schistosomiasis, is a known bladder carcinogen. Despite the causal link between S. haematobium and bladder cancer, the underlying mechanisms are poorly understood. S. haematobium oviposition in the bladder is associated with angiogenesis and urothelial hyperplasia. These changes may be pre-carcinogenic events in the bladder. We hypothesized that the Interleukin-4-inducing principle of Schistosoma mansoni eggs (IPSE), an S. haematobium egg-secreted “infiltrin” protein that enters host cell nuclei to alter cellular activity, is sufficient to induce angiogenesis and urothelial hyperplasia. Methods: Mouse bladders injected with S. haematobium eggs were analyzed via microscopy for angiogenesis and urothelial hyperplasia. Endothelial and urothelial cell lines were incubated with recombinant IPSE protein or an IPSE mutant protein that lacks the native nuclear localization sequence (NLS-) and proliferation measured using CFSE staining and real-time monitoring of cell growth. IPSE’s effects on urothelial cell cycle status was assayed through propidium iodide staining. Endothelial and urothelial cell uptake of fluorophore-labeled IPSE was measured. Findings: Injection of S. haematobium eggs into the bladder triggers angiogenesis, enhances leakiness of bladder blood vessels, and drives urothelial hyperplasia. Wild type IPSE, but not NLS-, increases proliferation of endothelial and urothelial cells and skews urothelial cells towards S phase. Finally, IPSE is internalized by both endothelial and urothelial cells. Interpretation: IPSE drives endothelial and urothelial proliferation, which may depend on internalization of the molecule. The urothelial effects of IPSE depend upon its NLS. Thus, IPSE is a candidate pro-carcinogenic molecule of S. haematobium.
Summary
Schistosoma haematobium acts as a bladder carcinogen through unclear mechanisms. The S. haematobium homolog of IPSE, a secreted schistosome egg immunomodulatory molecule, enhances angiogenesis and urothelial proliferation, hallmarks of pre-carcinogenesis, suggesting IPSE is a key pro-oncogenic molecule of S. haematobium
Diets containing sea cucumber (Isostichopus badionotus) meals are hypocholesterolemic in young rats
Peer reviewedPublisher PD
A pilot study of transrectal endoscopic ultrasound elastography in inflammatory bowel disease
BACKGROUND:
Using standard diagnostic algorithms it is not always possible to establish the correct phenotype of inflammatory bowel
disease which is essential for therapeutical decisions. Endoscopic ultrasound elastography is a new endoscopic procedure
which can differentiate the stiffness of normal and pathological tissue by ultrasound. Therefore, we aimed to investigate
the role of transrectal ultrasound elastography in distiction between Crohn's disease and ulcerative colitis. ----- METHODS:
A total 30 Crohn's disease, 25 ulcerative colitis, and 28 non-inflammatory bowel disease controls were included. Transrectal
ultrasound elastography was performed in all patients and controls. In all ulcerative coltis patients and 80% of Crohn's
disease patients endoscopy was performed to assess disease activity in the rectum. ----- RESULTS:
Significant difference in rectal wall thickness and strain ratio was detected between patients with Crohn's disease and
controls (p = 0.0001). CD patients with active disease had higher strain ratio than patients in remission (p = 0.02). In
ulcerative colitis group a significant difference in rectal wall thickness was found between controls and patients with
active disease (p = 0.03). A significant difference in rectal wall thickness (p = 0.02) and strain ratio (p = 0.0001) was
detected between Crohn's disease and ulcerative colitis patient group. Crohn's disease patients with active disease had a
significantly higher strain ratio compared to ulcerative colitis patients with active disease (p = 0.0001). ----- CONCLUSION:
Transrectal ultrasound elastography seems to be a promising new diagnostic tool in the field of inflammatory bowel
disease. Further study on a larger cohort of patients is needed to definitely assess the role of transrectal ultrasound
elastography in inflammatory bowel disease
High Sugar-Induced Insulin Resistance in Drosophila Relies on the Lipocalin Neural Lazarillo
In multicellular organisms, insulin/IGF signaling (IIS) plays a central role in matching energy needs with uptake and storage, participating in functions as diverse as metabolic homeostasis, growth, reproduction and ageing. In mammals, this pleiotropy of action relies in part on a dichotomy of action of insulin, IGF-I and their respective membrane-bound receptors. In organisms with simpler IIS, this functional separation is questionable. In Drosophila IIS consists of several insulin-like peptides called Dilps, activating a unique membrane receptor and its downstream signaling cascade. During larval development, IIS is involved in metabolic homeostasis and growth. We have used feeding conditions (high sugar diet, HSD) that induce an important change in metabolic homeostasis to monitor possible effects on growth. Unexpectedly we observed that HSD-fed animals exhibited severe growth inhibition as a consequence of peripheral Dilp resistance. Dilp-resistant animals present several metabolic disorders similar to those observed in type II diabetes (T2D) patients. By exploring the molecular mechanisms involved in Drosophila Dilp resistance, we found a major role for the lipocalin Neural Lazarillo (NLaz), a target of JNK signaling. NLaz expression is strongly increased upon HSD and animals heterozygous for an NLaz null mutation are fully protected from HSD-induced Dilp resistance. NLaz is a secreted protein homologous to the Retinol-Binding Protein 4 involved in the onset of T2D in human and mice. These results indicate that insulin resistance shares common molecular mechanisms in flies and human and that Drosophila could emerge as a powerful genetic system to study some aspects of this complex syndrome
Recommended from our members
Applying an extended theory of planned behaviour to predict breakfast consumption in adolescents
BACKGROUND/OBJECTIVES: Breakfast skipping increases during adolescence and is associated with lower levels of physical activity and weight gain. Theory-based interventions promoting breakfast consumption in adolescents report mixed findings, potentially because of limited research identifying which determinants to target. This study aimed to: (i) utilise the Theory of Planned Behaviour (TPB) to identify the relative contribution of attitudes (affective, cognitive and behavioural) to predict intention to eat breakfast and breakfast consumption in adolescents and (ii) determine whether demographic factors moderate the relationship between TPB variables, intention and behaviour. SUBJECTS/METHODS: Questionnaires were completed by 434 students (mean 14+/-0.9 years) measuring breakfast consumption (0-2, 3-6 or 7 days), physical activity levels and TPB measures. Data were analysed by breakfast frequency and demographics using hierarchical and multinomial regression analyses. RESULTS: Breakfast was consumed everyday by 57% of students, with boys more likely to eat a regular breakfast, report higher activity levels and report more positive attitudes towards breakfast than girls (P<0.001). The TPB predicted 58% of the variation in intentions. Overall, the model was predictive of breakfast behaviours (P<0.001), but the relative contribution of TPB constructs varied depending on breakfast frequency. Interactions between gender and intentions were significant when comparing 0-2- and 3-6-day breakfast eaters only highlighting a stronger intention-behaviour relationship for girls. CONCLUSIONS: Findings confirm that the TPB is a successful model for predicting breakfast intentions and behaviours in adolescents. The potential for a direct effect of attitudes on behaviours should be considered in the implementation and design of breakfast interventions
National records of 3000 European bee and hoverfly species: A contribution to pollinator conservation
Pollinators play a crucial role in ecosystems globally, ensuring the seed production of most flowering plants. They are threatened by global changes and knowledge of their distribution at the national and continental levels is needed to implement efficient conservation actions, but this knowledge is still fragmented and/or difficult to access. As a step forward, we provide an updated list of around 3000 European bee and hoverfly species, reflecting their current distributional status at the national level (in the form of present, absent, regionally extinct, possibly extinct or non-native). This work was attainable by incorporating both published and unpublished data, as well as knowledge from a large set of taxonomists and ecologists in both groups. After providing the first National species lists for bees and hoverflies for many countries, we examine the current distributional patterns of these species and designate the countries with highest levels of species richness. We also show that many species are recorded in a single European country, highlighting the importance of articulating European and national conservation strategies. Finally, we discuss how the data provided here can be combined with future trait and Red List data to implement research that will further advance pollinator conservation
PPARγ Controls Dectin-1 Expression Required for Host Antifungal Defense against Candida albicans
We recently showed that IL-13 or peroxisome proliferator activated receptor γ (PPARγ) ligands attenuate Candida albicans colonization of the gastrointestinal tract. Here, using a macrophage-specific Dectin-1 deficient mice model, we demonstrate that Dectin-1 is essential to control fungal gastrointestinal infection by PPARγ ligands. We also show that the phagocytosis of yeast and the release of reactive oxygen intermediates in response to Candida albicans challenge are impaired in macrophages from Dectin-1 deficient mice treated with PPARγ ligands or IL-13. Although the Mannose Receptor is not sufficient to trigger antifungal functions during the alternative activation of macrophages, our data establish the involvement of the Mannose Receptor in the initial recognition of non-opsonized Candida albicans by macrophages. We also demonstrate for the first time that the modulation of Dectin-1 expression by IL-13 involves the PPARγ signaling pathway. These findings are consistent with a crucial role for PPARγ in the alternative activation of macrophages by Th2 cytokines. Altogether these data suggest that PPARγ ligands may be of therapeutic value in esophageal and gastrointestinal candidiasis in patients severely immunocompromised or with metabolic diseases in whom the prevalence of candidiasis is considerable
Monomeric Tartrate Resistant Acid Phosphatase Induces Insulin Sensitive Obesity
Obesity is associated with macrophage infiltration of adipose tissue, which may link adipose inflammation to insulin resistance. However, the impact of inflammatory cells in the pathophysiology of obesity remains unclear
- …