671 research outputs found

    A monoclonal antibody-based immunoassay to measure the antibody response against the repeat region of the circumsporozoite protein of Plasmodium falciparum

    Get PDF
    Background: The malaria vaccine candidate RTS, S/AS01 (GSK Vaccines) induces high IgG concentration against the circumsporozoite protein (CSP) of Plasmodium falciparum. In human vaccine recipients circulating anti-CSP antibody concentrations are associated with protection against infection but appear not to be the correlate of protection. However, in a humanized mouse model of malaria infection prophylactic administration of a human monoclonal antibody (MAL1C), derived from a RTS, S/AS01-immunized volunteer, directed against the CSP repeat region, conveyed full protection in a dose-dependent manner suggesting that antibodies alone are able to prevent P. falciparum infection when present in sufficiently high concentrations. A competition ELISA was developed to measure the presence of MAL1C-like antibodies in polyclonal sera from RTS, S/AS01 vaccine recipients and study their possible contribution to protection against infection. Results: MAL1C-like antibodies present in polyclonal vaccine-induced sera were evaluated for their ability to compete with biotinylated monoclonal antibody MAL1C for binding sites on the capture antigen consisting of the recombinant protein encompassing 32 NANP repeats of CSP (R32LR). Serum samples were taken at different time points from participants in two RTS, S/AS01 vaccine studies (NCT01366534 and NCT01857869). Vaccine-induced protection status of the study participants was determined based on the outcome of experimental challenge with infected mosquito bites after vaccination. Optimal conditions were established to reliably detect MAL1C-like antibodies in polyclonal sera. Polyclonal anti-CSP antibodies and MAL1C-like antibody content were measured in 276 serum samples from RTS, S/AS01 vaccine recipients using the standard ELISA and MAL-1C competition ELISA, respectively. A strong correlation was observed between the results from these assays. However, no correlation was found between the results of either assay and protection against infection. Conclusions: The competition ELISA to measure MAL1C-like antibodies in polyclonal sera from RTS, S/AS01 vaccine recipients was robust and reliable but did not reveal the elusive correlate of protection

    Q Fever and the US Military

    Get PDF

    Platelet-Induced Clumping of Plasmodium falciparum–Infected Erythrocytes from Malawian Patients with Cerebral Malaria—Possible Modulation In Vivo by Thrombocytopenia

    Get PDF
    Platelets may play a role in the pathogenesis of human cerebral malaria (CM), and they have been shown to induce clumping of Plasmodium falciparum–parasitized red blood cells (PRBCs) in vitro. Both thrombocytopenia and platelet-inducedPRBCclumping are associated with severe malaria and, especially, withCM.In the present study, we investigated the occurrence of the clumping phenomenon in patients with CM by isolating and coincubating their plasma and PRBCs ex vivo. Malawian children with CM all had low platelet counts, with the degree of thrombocytopenia directly proportional to the density of parasitemia. Plasma samples obtained from these patients subsequently induced weak PRBC clumping. When the assays were repeated, with the plasma platelet concentrations adjusted to within the physiological range considered to be normal, massive clumping occurred. The results of this study suggest that thrombocytopenia may, through reduction of platelet-mediated clumping of PRBCs, provide a protective mechanism for the host during CM

    Mass campaigns combining antimalarial drugs and anti-infective vaccines as seasonal interventions for malaria control, elimination and prevention of resurgence: a modelling study

    Get PDF
    The only licensed malaria vaccine, RTS,S/AS01, has been developed for morbidity-control in young children. The potential impact on transmission of deploying such anti-infective vaccines to wider age ranges, possibly with co-administration of antimalarial treatment, is unknown. Combinations of existing malaria interventions is becoming increasingly important as evidence mounts that progress on reducing malaria incidence is stalling and threatened by resistance.; Malaria transmission and intervention dynamics were simulated using OpenMalaria, an individual-based simulation model of malaria transmission, by considering a seasonal transmission setting and by varying epidemiological and setting parameters such as transmission intensity, case management, intervention types and intervention coverages. Chemopreventive drugs and anti-infective vaccine efficacy profiles were based on previous studies in which model parameters were fitted to clinical trial data. These intervention properties were used to evaluate the potential of seasonal mass applications of preventative anti-infective malaria vaccines, alone or in combination with chemoprevention, to reduce malaria transmission, prevent resurgence, and/or reach transmission interruption.; Deploying a vaccine to all ages on its own is a less effective intervention strategy compared to chemoprevention alone. However, vaccines combined with drugs are likely to achieve dramatic prevalence reductions and in few settings, transmission interruption. The combined mass intervention will result in lower prevalence following the intervention compared to chemoprevention alone and will increase chances of interruption of transmission resulting from a synergistic effect between both interventions. The combination of vaccine and drug increases the time before transmission resurges after mass interventions cease compared to mass treatment alone. Deploying vaccines and drugs together requires fewer rounds of mass intervention and fewer years of intervention to achieve the same public health impact as chemoprevention alone.; Through simulations we identified a previously unidentified value of deploying vaccines with drugs, namely the greatest benefit will be in preventing and delaying transmission resurgence for longer periods than with other human targeted interventions. This is suggesting a potential role for deploying vaccines alongside drugs in transmission foci as part of surveillance-response strategies

    Sample-ready multiplex qPCR assay for detection of malaria

    Get PDF
    BACKGROUND: Microscopy and antigen detecting rapid diagnostic tests are the diagnostic tests of choice in management of clinical malaria. However, due to their limitations, the need to utilize more sensitive methods such as real-time PCR (qPCR) is evident as more studies are now utilizing molecular methods in detection of malaria. Some of the challenges that continue to limit the widespread utilization of qPCR include lack of assay standardization, assay variability, risk of contamination, and the need for cold-chain. Lyophilization of molecular assays can overcome some of these limitations and potentially enable widespread qPCR utilization. METHODS: A recently published multiplex malaria qPCR assay was lyophilized by freezing drying into Sample-Readyℱ format (MMSR). MMSR assay contained all the required reagents for qPCR including primers and probes, requiring only the addition of water and sample to perform qPCR. The performance of the MMSR assay was compared to the non-freeze dried, “wet” assay. Stability studies were done by maintaining the MMSR assays at four different ambient temperatures of 4°C, room temperature (RT), 37°C and 42°C over a period of 42 days, tested at seven-day intervals. Plasmodium falciparum and Plasmodium vivax DNAs were used for analysis of the MMSR assay either as single or mixed parasites, at two different concentrations. The C(T) values and the standard deviations (SD) were used in the analysis of the assay performance. RESULTS: The limit of detection for the MMSR assay was 0.244 parasites/ÎŒL for Plasmodium spp. (PLU) and P. falciparum (FAL) assay targets compared to “wet” assay which was 0.39 and 3.13 parasites/ÎŒL for PLU and FAL assay targets, respectively. The MMSR assay performed with high efficiencies similar to those of the “wet” assay and was stable at 37°C for 42 days, with estimated shelf-life of 5 months. When used to analyse field clinical samples, MMSR assay performed with 100% sensitivity and specificity compared to the “wet” assay. CONCLUSION: The MMSR assay has the same robust performance characteristics as the “wet” assay and is highly stable. Availability of MMSR assay allows flexibility and provides an option in choosing assay for malaria diagnostics depending on the application, needs and budget

    Comparative proteomic analysis of metabolically labelled proteins from Plasmodium falciparum isolates with different adhesion properties

    Get PDF
    The virulence of Plasmodium falciparum relates in part to the cytoadhesion characteristics of parasitized erythrocytes but the molecular basis of the different qualitative and quantitative binding phenotypes is incompletely understood. This paucity of information is due partly to the difficulty in working with membrane proteins, the variant nature of these surface antigens and their relatively low abundance. To address this two-dimensional (2D) protein profiles of closely related, but phenotypically different laboratory strains of P. falciparum have been characterized using proteomic approaches. Since the mature erythrocyte has no nucleus and no protein synthesis capability, metabolic labelling of proteins was used to selectively identify parasite proteins and increase detection sensitivity. A small number of changes (less than 10) were observed between four different P. falciparum laboratory strains with distinctive cytoadherence properties using metabolic labelling, with more parasite protein changes found in trophozoite iRBCs than ring stage. The combination of metabolic labelling and autoradiography can therefore be used to identify parasite protein differences, including quantitative ones, and in some cases to obtain protein identifications by mass spectrometry. The results support the suggestion that the membrane protein profile may be related to cytoadherent properties of the iRBCs. Most changes between parasite variants were differences in iso-electric point indicating differential protein modification rather than the presence or absence of a specific peptide

    Immunization with Pre-Erythrocytic Antigen CelTOS from Plasmodium falciparum Elicits Cross-Species Protection against Heterologous Challenge with Plasmodium berghei

    Get PDF
    BACKGROUND: The Plasmodium protein Cell-traversal protein for ookinetes and sporozoites (CelTOS) plays an important role in cell traversal of host cells in both, mosquito and vertebrates, and is required for successful malaria infections. CelTOS is highly conserved among the Plasmodium species, suggesting an important functional role across all species. Therefore, targeting the immune response to this highly conserved protein and thus potentially interfering with its biological function may result in protection against infection even by heterologous species of Plasmodium. METHODOLOGY/PRINCIPAL FINDINGS: To test this hypothesis, we developed a recombinant codon-harmonized P. falciparum CelTOS protein that can be produced to high yields in the E. coli expression system. Inbred Balb/c and outbred CD-1 mice were immunized with various doses of the recombinant protein adjuvanted with Montanide ISA 720 and characterized using in vitro and in vivo analyses. CONCLUSIONS/SIGNIFICANCE: Immunization with PfCelTOS resulted in potent humoral and cellular immune responses and most importantly induced sterile protection against a heterologous challenge with P. berghei sporozoites in a proportion of both inbred and outbred mice. The biological activity of CelTOS-specific antibodies against the malaria parasite is likely linked to the impairment of sporozoite motility and hepatocyte infectivity. The results underscore the potential of this antigen as a pre-erythrocytic vaccine candidate and demonstrate for the first time a malaria vaccine that is cross-protective between species
    • 

    corecore