6,817 research outputs found

    Applications of TIMS data in agricultural areas and related atmospheric considerations

    Get PDF
    While much of traditional remote sensing in agricultural research was limited to the visible and reflective infrared, advances in thermal infrared remote sensing technology are adding a dimension to digital image analysis of agricultural areas. The Thermal Infrared Multispectral Scanner (TIMS) an airborne sensor having six bands over the nominal 8.2 to 12.2 m range, offers the ability to calculate land surface emissivities unlike most previous singular broadband sensors. Preliminary findings on the utility of the TIMS for several agricultural applications and related atmospheric considerations are discussed

    Searching for Very High Energy Emission from Pulsars Using the High Altitude Water Cherenkov (HAWC) Observatory

    Full text link
    There are currently over 160 known gamma-ray pulsars. While most of them are detected only from space, at least two are now seen also from the ground. MAGIC and VERITAS have measured the gamma ray pulsed emission of the Crab pulsar up to hundreds of GeV and more recently MAGIC has reported emission at ∼2\sim2 TeV. Furthermore, in the Southern Hemisphere, H.E.S.S. has detected the Vela pulsar above 30 GeV. In addition, non-pulsed TeV emission coincident with pulsars has been detected by many groups, including the Milagro Collaboration. These GeV-TeV observations open the possibility of searching for very-high-energy (VHE, > 100GeV) pulsations from gamma-rays pulsars in the HAWC field of view.Comment: Presented at the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. See arXiv:1508.03327 for all HAWC contribution

    An Improved Three-Phase AMB Distribution System State Estimator

    Get PDF

    Improving rainfall nowcasting and urban runoff forecasting through dynamic radar-raingauge rainfall adjustment

    Get PDF
    The insufficient accuracy of radar rainfall estimates is a major source of uncertainty in short-term quantitative precipitation forecasts (QPFs) and associated urban flood forecasts. This study looks at the possibility of improving QPFs and urban runoff forecasts through the dynamic adjustment of radar rainfall estimates based on raingauge measurements. Two commonly used techniques (Kriging with External Drift (KED) and mean field bias correction) were used to adjust radar rainfall estimates for a large area of the UK (250,000 km2) based on raingauge data. QPFs were produced using original radar and adjusted rainfall estimates as input to a nowcasting algorithm. Runoff forecasts were generated by feeding the different QPFs into the storm water drainage model of an urban catchment in London. The performance of the adjusted precipitation estimates and the associated forecasts was tested using local rainfall and flow records. The results show that adjustments done at too large scales cannot provide tangible improvements in rainfall estimates and associated QPFs and runoff forecasts at small scales, such as those of urban catchments. Moreover, the results suggest that the KED adjusted rainfall estimates may be unsuitable for generating QPFs, as this method damages the continuity of spatial structures between consecutive rainfall fields

    Mid-winter lower stratosphere temperatures in the Antarctic vortex: comparison between observations and ECMWF operational model.

    No full text
    International audienceRadiosonde temperature profiles from Belgrano (78° S) and other Antarctic stations have been compared with European Centre for Medium-Range Weather Forecasts (ECMWF) data during the winter of 2003. Results show a bias in the operational model which is height and temperature dependent, being too cold at layers peaking at 80 and 25?30 hPa, and hence resulting in an overestimation of the predicted potential PSC areas. Here we show the results of the comparison by considering the possibility of a bias in the sondes at extremely low temperatures and discuss the potential implications that this bias might have on the ozone depletion computed by Climate Transport Model based on ECMWF temperature fields

    Antarctic ozone variability inside the polar vortex estimated from balloon measurements

    Get PDF
    Thirteen years of ozone soundings at the Antarctic Belgrano II station (78° S, 34.6° W) have been analysed to establish a climatology of stratospheric ozone and temperature over the area. The station is inside the polar vortex during the period of development of chemical ozone depletion. Weekly periodic profiles provide a suitable database for seasonal characterization of the evolution of stratospheric ozone, especially valuable during wintertime, when satellites and ground-based instruments based on solar radiation are not available. The work is focused on ozone loss rate variability (August–October) and its recovery (November–December) at different layers identified according to the severity of ozone loss. The time window selected for the calculations covers the phase of a quasi-linear ozone reduction, around day 220 (mid-August) to day 273 (end of September). Decrease of the total ozone column over Belgrano during spring is highly dependent on the meteorological conditions. Largest depletions (up to 59%) are reached in coldest years, while warm winters exhibit significantly lower ozone loss (20%). It has been found that about 11% of the total O<sub>3</sub> loss, in the layer where maximum depletion occurs, takes place before sunlight has arrived, as a result of transport to Belgrano of air from a somewhat lower latitude, near the edge of the polar vortex, providing evidence of mixing inside the vortex. Spatial homogeneity of the vortex has been examined by comparing Belgrano results with those previously obtained for South Pole station (SPS) for the same altitude range and for 9 yr of overlapping data. Results show more than 25% higher ozone loss rate at SPS than at Belgrano. The behaviour can be explained taking into account (i) the transport to both stations of air from a somewhat lower latitude, near the edge of the polar vortex, where sunlight reappears sooner, resulting in earlier depletion of ozone, and (ii) the accumulated hours of sunlight, which become much greater at the South Pole after the spring equinox. According to the variability of the ozone hole recovery, a clear connection between the timing of the breakup of the vortex and the monthly ozone content was found. Minimum ozone concentration of 57 DU in the 12–24 km layer remained in November, when the vortex is more persistent, while in years when the final stratospheric warming took place "very early", mean integrated ozone rose by up to 160–180 DU

    Denaturation transition of stretched DNA

    Get PDF
    We generalize the Poland-Scheraga model to consider DNA denaturation in the presence of an external stretching force. We demonstrate the existence of a force-induced DNA denaturation transition and obtain the temperature-force phase diagram. The transition is determined by the loop exponent cc for which we find the new value c=4ν−1/2c=4\nu-1/2 such that the transition is second order with c=1.85<2c=1.85<2 in d=3d=3. We show that a finite stretching force FF destabilizes DNA, corresponding to a lower melting temperature T(F)T(F), in agreement with single-molecule DNA stretching experiments.Comment: 5 pages, 3 figure

    Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma

    Get PDF
    Myeloid suppressor cells (MSCs) producing high levels of arginase I block T cell function by depleting l-arginine in cancer, chronic infections, and trauma patients. In cancer, MSCs infiltrating tumors and in circulation are an important mechanism for tumor evasion and impair the therapeutic potential of cancer immunotherapies. However, the mechanisms that induce arginase I in MSCs in cancer are unknown. Using the 3LL mouse lung carcinoma, we aimed to characterize these mechanisms. Arginase I expression was independent of T cell–produced cytokines. Instead, tumor-derived soluble factors resistant to proteases induced and maintained arginase I expression in MSCs. 3LL tumor cells constitutively express cyclooxygenase (COX)-1 and COX-2 and produce high levels of PGE2. Genetic and pharmacological inhibition of COX-2, but not COX-1, blocked arginase I induction in vitro and in vivo. Signaling through the PGE2 receptor E-prostanoid 4 expressed in MSCs induced arginase I. Furthermore, blocking arginase I expression using COX-2 inhibitors elicited a lymphocyte-mediated antitumor response. These results demonstrate a new pathway of prostaglandin-induced immune dysfunction and provide a novel mechanism that can help explain the cancer prevention effects of COX-2 inhibitors. Furthermore, an addition of arginase I represents a clinical approach to enhance the therapeutic potential of cancer immunotherapies
    • …
    corecore