4 research outputs found

    A rapid in vivo screen for pancreatic ductal adenocarcinoma therapeutics

    Get PDF
    Pancreatic ductal adenocarcinoma (PDA) is the fourth leading cause of cancer-related deaths in the United States, and is projected to be second by 2025. It has the worst survival rate among all major cancers. Two pressing needs for extending life expectancy of affected individuals are the development of new approaches to identify improved therapeutics, addressed herein, and the identification of early markers. PDA advances through a complex series of intercellular and physiological interactions that drive cancer progression in response to organ stress, organ failure, malnutrition, and infiltrating immune and stromal cells. Candidate drugs identified in organ culture or cell-based screens must be validated in preclinical models such as KIC (p48Cre;LSL-KrasG12D;Cdkn2af/f) mice, a genetically engineered model of PDA in which large aggressive tumors develop by 4 weeks of age. We report a rapid, systematic and robust in vivo screen for effective drug combinations to treat Kras-dependent PDA. Kras mutations occur early in tumor progression in over 90% of human PDA cases. Protein kinase and G-protein coupled receptor (GPCR) signaling activates Kras. Regulators of G-protein signaling (RGS) proteins are coincidence detectors that can be induced by multiple inputs to feedback-regulate GPCR signaling. We crossed Rgs16::GFP bacterial artificial chromosome (BAC) transgenic mice withKIC mice and show that the Rgs16::GFP transgene is a KrasG12D-dependent marker of all stages of PDA, and increases proportionally to tumor burden in KIC mice. RNA sequencing (RNA-Seq) analysis of cultured primary PDA cells reveals characteristics of embryonic progenitors of pancreatic ducts and endocrine cells, and extraordinarily high expression of the receptor tyrosine kinase Axl, an emerging cancer drug target. In proof-of-principle drug screens, we find that weanling KIC mice with PDA treated for 2 weeks with gemcitabine (with or without Abraxane) plus inhibitors of Axl signaling (warfarin and BGB324) have fewer tumor initiation sites and reduced tumor size compared with the standard-of-care treatment. Rgs16::GFP is therefore an in vivo reporter of PDA progression and sensitivity to new chemotherapeutic drug regimens such as Axl-targeted agents. This screening strategy can potentially be applied to identify improved therapeutics for other cancers

    Rgs16 and Rgs8 in embryonic endocrine pancreas and mouse models of diabetes

    No full text
    Diabetes is characterized by the loss, or gradual dysfunction, of insulin-producing pancreatic β-cells. Although β-cells can replicate in younger adults, the available diabetes therapies do not specifically target β-cell regeneration. Novel approaches are needed to discover new therapeutics and to understand the contributions of endocrine progenitors and β-cell regeneration during islet expansion. Here, we show that the regulators of G protein signaling Rgs16 and Rgs8 are expressed in pancreatic progenitor and endocrine cells during development, then extinguished in adults, but reactivated in models of both type 1 and type 2 diabetes. Exendin-4, a glucagon-like peptide 1 (Glp-1)/incretin mimetic that stimulates β-cell expansion, insulin secretion and normalization of blood glucose levels in diabetics, also promoted re-expression of Rgs16::GFP within a few days in pancreatic ductal-associated cells and islet β-cells. These findings show that Rgs16::GFP and Rgs8::GFP are novel and early reporters of G protein-coupled receptor (GPCR)-stimulated β-cell expansion after therapeutic treatment and in diabetes models. Rgs16 and Rgs8 are likely to control aspects of islet progenitor cell activation, differentiation and β-cell expansion in embryos and metabolically stressed adults

    The synthetic diazonamide DZ-2384 has distinct effects on microtubule curvature and dynamics without neurotoxicity

    No full text
    Microtubule-targeting agents (MTAs) are widely used anticancer agents, but toxicities such as neuropathy limit their clinical use. MTAs bind to and alter the stability of microtubules, causing cell death in mitosis. We describe DZ-2384, a preclinical compound that exhibits potent antitumor activity in models of multiple cancer types. It has an unusually high safety margin and lacks neurotoxicity in rats at effective plasma concentrations. DZ-2384 binds the vinca domain of tubulin in a distinct way, imparting structurally and functionally different effects on microtubule dynamics compared to other vinca-binding compounds. X-ray crystallography and electron microscopy studies demonstrate that DZ-2384 causes straightening of curved protofilaments, an effect proposed to favor polymerization of tubulin. Both DZ-2384 and the vinca alkaloid vinorelbine inhibit microtubule growth rate; however, DZ-2384 increases the rescue frequency and preserves the microtubule network in nonmitotic cells and in primary neurons. This differential modulation of tubulin results in a potent MTA therapeutic with enhanced safety
    corecore