261 research outputs found

    Can the Kiunga MPA protect the Lamu fishery?

    Get PDF
    info:eu-repo/semantics/publishedYoung Marine Scientists’ Day Vlaams Instituut voor de Zee (VLIZ), 24 fĂ©vrier, Brugge, Belgiqu

    Chapter 04: Ecological resilience, climate change and the Great Barrier Reef

    Get PDF
    The vulnerability assessments in this volume frequently refer to the resilience of various ecosystem elements in the face of climate change. This chapter provides an introduction to the concept of ecological resilience, and its application as part of a management response to climate change threats. As defined in the glossary, resilience refers to the capacity of a system to absorb shocks, resist dramatic changes in condition, and maintain or recover key functions and processes, without undergoing “phase shifts” to a qualitatively different state. For example, people who are physically and mentally fit and strong will have good prospect of recovery from disease, injury or trauma: they are resilient.This is Chapter 4 of Climate change and the Great Barrier Reef: a vulnerability assessment. The entire book can be found at http://hdl.handle.net/11017/13

    Complex transboundary movements of marine megafauna in the Western Indian Ocean

    Get PDF
    Transboundary marine species have an increased risk of overexploitation as management regimes and enforcement can vary among states. The complex geopolitical layout of exclusive economic zones (EEZs) in the Western Indian Ocean (WIO) introduces the potential for migratory species to cross multiple boundaries, consequently a lack of scientific data could complicate regional management. In the current study, we highlight both the relative lack of spatial data available in the WIO, and the prevalence of transboundary movements in species that have previously been studied in the region. Five tiger sharks Galeocerdo cuvier were tracked with near real‐time positioning (SPOT) satellite tags to determine individual shark movements relative to EEZs within the WIO. Concurrently, a literature search was performed to identify all satellite telemetry studies conducted to date in the WIO for marine megafaunal species, and the results compared to global satellite telemetry effort. Finally, the satellite tracks of all marine species monitored in the WIO were extracted and digitized to examine the scale of transboundary movements that occur in the region. Tiger sharks exhibited both coastal and oceanic movements, with one individual crossing a total of eight EEZs. Satellite telemetry effort in the WIO has not matched the global increase, with only 4.7% of global studies occurring in the region. Species in the WIO remained within the EEZ in which they were tagged in only three studies, while all other species demonstrated some level of transboundary movement. This study demonstrates the lack of spatial data available for informed regional management in an area where transboundary movements by marine megafauna are highly prevalent. Without more dedicated funding and research, the rich biodiversity of the WIO is at risk of overexploitation from the diverse threats present within the various political regions

    Reconciling safe planetary targets and planetary justice: Why should social scientists engage with planetary targets?

    Get PDF
    As human activity threatens to make the planet unsafe for humanity and other life forms, scholars are identifying planetary targets set at a safe distance from biophysical thresholds beyond which critical Earth systems may collapse. Yet despite the profound implications that both meeting and transgressing such targets may have for human wellbeing, including the potential for negative trade-offs, there is limited social science analysis that systematically considers the justice dimensions of such targets. Here we assess a range of views on planetary justice and present three arguments associated with why social scientists should engage with the scholarship on safe targets. We argue that complementing safe targets with just targets offers a fruitful approach for considering synergies and trade-offs between environmental and social aspirations and can inform inclusive deliberation on these important issues

    Methods for the Study of Marine Biodiversity

    Get PDF
    Recognition of the threats to biodiversity and its importance to society has led to calls for globally coordinated sampling of trends in marine ecosystems. As a step to defining such efforts, we review current methods of collecting and managing marine biodiversity data. A fundamental component of marine biodiversity is knowing what, where, and when species are present. However, monitoring methods are invariably biased in what taxa, ecological guilds, and body sizes they collect. In addition, the data need to be placed, and/or mapped, into an environmental context. Thus a suite of methods will be needed to encompass representative components of biodiversity in an ecosystem. Some sampling methods can damage habitat and kill species, including unnecessary bycatch. Less destructive alternatives are preferable, especially in conservation areas, such as photography, hydrophones, tagging, acoustics, artificial substrata, light-traps, hook and line, and live-traps. Here we highlight examples of operational international sampling programmes and data management infrastructures, notably the Continuous Plankton Recorder, Reef Life Survey, and detection of Harmful Algal Blooms and MarineGEO. Data management infrastructures include the World Register of Marine Species for species nomenclature and attributes, the Ocean Biogeographic Information System for distribution data, Marine Regions for maps, and Global Marine Environmental Datasets for global environmental data. Existing national sampling programmes, such as fishery trawl surveys and intertidal surveys, may provide a global perspective if their data can be integrated to provide useful information. Less utilised and emerging sampling methods, such as artificial substrata, light-traps, microfossils and eDNA also hold promise for sampling the less studied components of biodiversity. All of these initiatives need to develop international standards and protocols, and long-term plans for their governance and support.published_or_final_versio
    • 

    corecore