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Part I: Introduction

4.1 The concept of resilience in social-ecological systems

The vulnerability assessments in this volume frequently refer to the resilience of various ecosystem
elements in the face of climate change. This chapter provides an introduction to the concept of
ecological resilience, and its application as part of a management response to climate change threats.
As defined in the glossary, resilience refers to the capacity of a system to absorb shocks, resist dramatic
changes in condition, and maintain or recover key functions and processes, without undergoing “phase
shifts” to a qualitatively different state (Figure 4.1)32 72, For example, people who are physically and
mentally fit and strong will have good prospect of recovery from disease, injury or trauma: they
are resilient.

Figure 4.1
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In Figure 4.1, a ball placed at position 1 is dynamically stable: not only will it remain in position, but
if pushed in any direction, it will return to its original position; thus the ball in this state is resilient,
in that it can absorb shocks and return to a similar condition or state. In contrast, a ball placed at
position 2 may be initially stable (it will remain in position if undisturbed) but not dynamically stable:
if disturbed, it will move away. Thus the ball at position 2 is not resilient, and disturbances will result
in a shift in state. If the ball at position 1 is disturbed to anywhere within the red circle, the ball will
return to position 1; however, if disturbed further, the ball may not return, but may move to a new,
alternate stable state (eg position 3). This system is resilient to disturbances that push it within the
red boundary. However, if external factors decreased the depth of position 1, or lowered the saddle at
point 2, then the system’s resilience would be reduced. By analogy to coral reef ecosystems, position
1 might be a coral-dominated reef, and position 3 algal dominated. A disturbance such as killing
coral that is overgrown by algae would move the reef toward an algal-dominated state; if the reef is
resilient, this change would be temporary and natural processes would allow coral to re-establish and
recover. If not, the algal dominance might be sufficient to preclude coral regrowth or recruitment,
and the reef would change trajectory, moving toward algal dominance.
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Ecological resilience refers to the capacity of an ecosystem, habitat, population or taxon to withstand,
recover from or adapt to impacts and stressors, such as climate change, and retain the same structure,
processes and functions®2. For example, coral reefs are naturally very dynamic, undergoing constant
change and disturbances, but, under natural conditions, they have considerable capacity to recover or
maintain key processes and functions in the face of such disturbances or pressures. Tropical storms may
cause dramatic damage to coral populations, and hence to the physical habitat structure, with dead
coral being overgrown by various forms of algae. This will result in a temporarily changed state, and
changes in ecological functions. On a resilient reef, over a period of five to 20 years, the altered state is
unstable: coral fragments will regrow, and new corals will settle, grow and gradually replace the algae,
restoring the reef to coral dominance, and restoring ecological structure and processes. In contrast,
however, if human impacts have undermined that resilience, algal growth may be exacerbated, coral
regrowth and colonisation may be suppressed, and the altered state and processes may become stable,
causing a long-term “phase shift”, or change, to algal dominance3* 537,

For ecosystems to persist in the long term, successful reorganisation (recovery) after disturbance
is fundamental. However, coral reefs are facing pressures at local, regional and global scales that
challenge their capacity to reorganise following disturbance and thus challenge their existence3"
3478 Coral reefs exposed to gradual change are often assumed to respond gradually and smoothly.
However, like most other ecosystems, they are dynamic, complex and adaptives. Put simply, this
means that they are characterised by environmental thresholds that, if crossed, may lead to large-scale
and relatively abrupt shifts in state, including changes in ecosystem processes and structure (eg coral-
dominated reefs shifting to algal dominance) and in their capacity for self-organisation** 24, Ecological
resilience also embraces adaptability, in the sense that an ecosystem may maintain characteristic
structures and processes by developing new and innovative organisation or attributes. For example,
in the Caribbean, sea urchin populations increased in response to overfishing of herbivorous
fishes; in effect, the ecosystem reorganised to maintain the process of herbivory3033. Importantly,
once a threshold is crossed and a shift in state or key processes occurs, it may be difficult, or even
impossible, to reverse the shift, due to changes in feedback mechanisms that stabilise the new state.
Such reinforcing mechanisms may, for example, involve algae that prevent corals from establishing
by occupying substratum, trapping sediments, releasing allelopathic chemicals, and overgrowing
juvenile and low-relief adult coral coloniess'7#7. Reversing such a shift may require a different path,
and restoring conditions to previous levels may not be sufficient (an effect known as “hysteresis”)3.
For example, the numbers and species of herbivorous fishes required to prevent algal overgrowth of
corals may not be enough to remove an algal bloom once it has occurred. Reversal of such shifts may
not only be difficult, but is likely to be significantly more expensive than prevention.

The concept of resilience provides a valuable integrating theme or perspective for both the science
and management of natural environments, in particular because it addresses two of the most difficult
challenges in understanding and managing human impacts on natural ecosystems: first, that different
natural or anthropogenic (human-derived) stressors can interact, and synergise to cause more
damage than either stressor alone?* 52, and second, that stressors and their impacts and interactions
can be difficult or even impossible to predict. Individual human-derived stressors rarely occur in
isolation: for example, for example, terrestrial runoff to reef waters, usually contains increased levels
of several pollutants, such as sediments, nutrients and pesticides. Several studies have shown much
higher impacts in response to combinations of pollutants than to individual pollutants?. If, as human
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populations grow, increased runoff co-occurs with overfishing, algal growth, enhanced by nutrients,
may pass a threshold level, beyond which herbivorous fishes may fail to control algal abundance if
their numbers have been reduced*. The result may be a sudden overgrowth of algae that is well
beyond that accounted for by the nutrient runoff.

Interactions between chronic and acute disturbances are particularly significant. For example, on coral
reefs, considerable evidence has emerged that while some chronic human-derived stressors, such
as over-fishing or eutrophication (nutrient and sediment pollution), may have relatively small direct
effects on established corals, they may severely limit the capacity of coral populations to recover after
acute disturbances such as storm damage or mass bleaching due to sea warming. In this scenario, the
chronic stressor may be of little immediate and direct threat to undisturbed reefs, but may reduce the
resilience of the habitat, so that failure to recover from frequent, repeated disturbances may result in
a gradual, piecemeal degradation or “ratchetting down” of reef health (Figure 4.2)33 52,

Figure 4.2 Modelling the effects of chronic stressors, such as eutrophication, and repeated
disturbance, such as mass bleaching, showing the potential importance of interactions (redrawn
from McCook et al 2001%2). Individual graphs represent the changes in coral (blue lines) and algae
(brown lines) through time, for computer simulations of reef dynamics.
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Figure 4.2 simulates the effects of increasingly frequent disturbancess2. The graphs on the left show
that the “virtual reef” is relatively resilient and coral populations recover after each disturbance, so
that even with relatively frequent disturbances overall reef condition is maintained in the long term.
The three graphs along the top row indicate potential effects of increasing stresses, such as overfishing
or eutrophication. Reef condition declines with increased stress, but coral populations can persist at
moderate levels: reef condition is moderate, but resilience is reduced by the stresses. However, when
chronic stress is combined with frequent disturbance (bottom right graph), the reduced resilience
means the reef cannot fully recover before the next disturbance, damage accumulates and there is
a serious long-term decline in condition. Thus, this model reef community can persist with either
frequent disturbances or chronic stresses, but becomes degraded if subjected to both impacts. This
model illustrates two important points. Firstly, the chronic stresses do not appear to cause the coral
declines in the bottom right panel; simple monitoring of this system would suggest the declines
are caused by the disturbances. Only by understanding the processes that engender recovery and
resilience do we recognise the critical role of the chronic stresses. Secondly, management strategies
that seek to both reduce the frequency of disturbance (eg by mitigating climate change) and enhance
the resilience (eg by reducing overfishing or runoff of pollutants) may be much more effective than
either action alone.

The risk with this situation is that management actions that address stressors in isolation may fail if
they do not address the potential interactions. In addition, they may fail to engender public support;
for example, addressing pollutant runoff might be seen as wasted effort because the perception is
that climate change will damage the reef anyway. By understanding these interactions, scientists,
managers and the public will be able to see the value of specific management actions not only in
addressing the specific risk, such as pollutant impacts, but also in maintaining the overall resilience of
the ecosystem to resist or recover from other impacts.

The second benefit of managing for overall resilience, as well as for specific threats or impacts, is that
it provides the best insurance against future unforeseen or unpredictable threats*>2. Several of the
most significant threats to coral reefs in recent decades have emerged unexpectedly. The decline of
Caribbean reefs was significantly increased by the completely unforeseen, wide-scale disease-induced
mortality of herbivorous Diadema sea urchins in the 1980s. These herbivorous sea urchins had
previously prevented algal exclusion of corals, and the impact of this die-off was much more severe
because of the wide-spread depletion of herbivorous fish38. Similarly, the now wide recognition of the
impact of climate change on coral reefs through increased mass bleaching was unforeseen 10 years
ago®'. It is likely that other currently unrecognised threats will emerge for reefs and other habitats
within the Great Barrier Reef (GBR) until science identifies new threats, the best management strategy
is to aim for a system with the resilience to recover from a wide range of possible challenges.

The concept of resilience is not limited to ecosystems in isolation from humans, but also applies to
social and economic systems and it has been recognised for some time that social, economic and
ecological resilience are strongly intertwined. Management actions aimed at protecting ecological
resilience that also take account of the social and economic wellbeing of the community will
generally be more sustainable and effective in the long-term. For example, marine protected areas
that generate increased tourism revenue for local communities from the improved condition of
ecological resources, or increase sustainability of fisheries, generate support in those communities,
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in turn generating improved compliance and enforcement’”2. Management that ignores or overruns
the social or economic context will often be less effective, or fail, owing to a lack of local support
or political intervention. Importantly, social, economic and ecological resilience are not inconsistent
goals, and can be effectively integrated?.

Resilience also provides a basis for integration of management strategies and responses to different
issues, and for adaptive management approaches. Thus, management action to reduce terrestrial
runoff may be markedly more or less effective, depending on the management of pressures on
herbivorous fish populations*#'. It may be most beneficial to manage fishing pressure in areas with
the highest runoff. Adaptive management requires that the effectiveness of current management
practices be periodically reviewed as conditions and circumstances change, and as new threats
emerge. The concept of resilience suggests that any review should include not only the apparent state
of the ecosystem (or social-ecological system), but also the key processes and functions which confer
resilience, and that management actions should respond or adapt to changes in those processes and
functions®.

4.2 Ecological resilience in the context of climate change

Human-induced climate change is a major threat to many ecosystems, including the GBR3'3* (see
chapters 5-22). In simple terms, two management approaches can be taken to minimise these
impacts: reduce the extent of the changes; and maximise the capacity of the system to resist, adapt
to, or recover from, those impacts (Figure 4.3). Overall, addressing the cause of the problem (for
example, by abatement of greenhouse gas emissions) is critically important and likely to be the
most effective approach. It is also likely to be the most cost-effective strategy overall, because it will
ameliorate impacts on a vast range of systems, both human and natural. However, such measures are
beyond the scope of marine management agencies, and will not be sufficient alone. Because there
will be long lag times in the reversal of current climate trends (decades to centuries), ongoing change
is inevitable for the next several decades (Lough chapter 2).

Figure 4.3
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Figure 4.3 shows that the effect of pressures on reefs (solid red line) is predicted to increase
dramatically over the next century, due to climate change and other human impacts. As a result,
ecosystem condition is likely to decline, along with the capacity to recover from those impacts. If
the loss of resilience is sufficient, reefs may pass a threshold beyond which they do not recover, but
remain in an alternate, degraded state (solid green line). There are two complementary strategies
available to managers. First, and paramount, is to reduce climate change and other human pressures
on reefs (dashed red line); in the case of climate change, this requires action at global scales, and is
beyond the scope of marine management agencies. Second is to manage other sources of stresses or
pressures on the reefs, so that the decline in resilience is reduced and the ecosystem has enhanced
capacity to maintain itself or to recover, rather than pass the threshold. Action on this strategy
- managing for resilience — is challenging but possible for marine management agencies.

In this context, it is critical to maximise the capacity of the GBR ecosystem, and the communities and
industries that depend on it, to adapt to climate change. However, as numerous chapters in the current
volume illustrate, for many taxa and ecosystems there is a lack of detailed scientific understanding of
the impacts, and an even greater ignorance of how to address those impacts directly. This makes it very
difficult to develop specific management strategies for climate change adaptation. It thus becomes
increasingly critical to maximise the resilience or capacity of the ecosystem to cope with changes
generally. Management for resilience is therefore not only a general strategy for protection, but an
important part of responding to the impending threat of climate change3*.

It is important to emphasise that abatement and adaptation are necessarily complementary strategies.
Managing for resilience is unlikely to provide sufficient protection for the biodiversity of the GBR;
rather, it aims to slow and reduce the impacts sufficiently to allow natural adaptation and abatement
of climate change to occur. Good management of marine ecosystems must not be seen as reducing
the need for strong and urgent attention on a global scale to a problem of global magnitude.

4.3 Aspects of the ecological resilience of the Great Barrier Reef

Of the numerous and varied habitats found in the GBR, the factors contributing to the resilience of
coral reefs are best understood*”#¢345, The following section provides a brief overview of some of these
factors, although the discussion is intended to be illustrative, rather than exhaustive. Unfortunately,
there is relatively little or no specific information available on the factors contributing to resilience of
most other GBR habitats. This section therefore focuses primarily on coral reefs, as an example of the
approach, and then only very briefly considers how the approach might apply to other habitats, and
to species of particular conservation concern (such as dugong and other megafauna).

4.3.1 Factors contributing to ecological resilience of coral reefs

4.3.1.1 Population condition and dynamics of reef-building corals

The population condition and dynamics of corals, as the major contributors to reef construction,
are fundamental to the capacity of reefs to absorb and recover from disturbances. Abundance of
corals is an important factor, since disturbance to a reef with abundant coral will generally still leave
some coral alive that can be a basis for population recovery. However, other key aspects include
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the diversity, fecundity, settlement and post-settlement survival rates and general metabolic and
immunological condition of the corals®. It is important to recognise that a reef dominated by large but
fragile corals may have a lower capacity to recover from a disturbance than a reef with less coral but
more diversity of forms and higher recruitment rates. Similarly, low abundance of coral may simply
reflect recent disturbance history, rather than overall low resilience. If coral recruitment and growth
is high, reef condition may recover relatively quickly*”.

Coral population dynamics can have important indirect significance for resilience. For example, a reef
with abundant and diverse corals is likely to have a complex, topographic structure that provides
important habitat for other groups of organisms, thereby increasing biodiversity and potentially
strengthening critical functions such as herbivory”'s°.

4.3.1.2 Benthic algal assemblages and herbivory

Competition between corals and benthic algae is fundamental to the abundance of corals on reefs.
Algae may directly overgrow coral tissue, reduce the amount of light available for photosynthesis,
abrade tissue, or produce chemicals that damage or kill coral tissues'. All of these effects will have
significant metabolic costs to the coral, even if it is able to resist or defend itself.

Recent work has highlighted a particular, chemically mediated, mechanism of algal competition
related to the microbial community on reefs. Plants release organic carbon into the water column
and this has been found to increase microbial activity, which can result in coral tissue mortality+4367.
Additionally, increasingly complex and long-living algal assemblages may accumulate larger microbial
populations. Again, even if the coral tissue is not killed, these microbial stresses will have significant
metabolic costs, reducing the capacity of corals to respond to other stresses.

Perhaps more significantly, algae may pre-empt space, inhibiting or preventing coral recruitment.
Coral mortality is almost universally followed by colonisation by benthic algae of various forms (Figure
4.4)1517. After wide-scale coral mortality, such as results from climate change-induced mass coral
bleaching3'78, the majority of substrate will be covered in various forms of algae, and recovery of
coral populations will generally require recruitment on substrates dominated by algae (rather than on
live coral, for example).” The nature of this algal assemblage will be fundamentally important to the
success of subsequent coral settlement and growth. Substrate dominated by crustose coralline algae,
with a sparse covering of short (less than 1 mm), fine filamentous turf algae, is likely to be highly
favourable for coral settlement and growth. In contrast, a dense algal mat or thick growth of upright
foliose or fleshy algae may severely inhibit coral settlement and survival, especially as such mats will
often trap large amounts of sediment”?7.

Under expected climate change scenarios, mass bleaching events are expected to occur with increasing
frequency and severity3'. Under these scenarios, algal overgrowth of dead corals and consequent
algal dominance will become the norm, and coral populations are unlikely to recover sufficiently in
between bleaching events. In such circumstances, the effects of different algal assemblages on coral
recruitment, and on the recovery of surviving coral fragments, will become critical to the resilience of
the reef, as will the effects of climate change on algal assemblages (Diaz-Pulido et al. chapter 7). It is
likely that algal impacts on coral populations will become a real “bottleneck” for reef recovery.

Climate Change and the Great Barrier Reef:



Figure 4.4 Algal overgrowth of bleached corals in the Keppel Islands, Great Barrier Reef (August
2006). Severe bleaching of corals in the summer of 2006 resulted in extensive coral mortality and
overgrowth by the alga Lobophora variegata. Previous work has shown L. variegata to be a highly
effective competitor with corals®*'. The fate of these reefs will depend on factors such as herbivory,
which influence the persistence of alga, and it's impact on coral regrowth and recruitment.

Given the importance of benthic algae to coral populations, controls on the abundance and type of algae
are critically important to reef condition. The primary controls on algal abundance and type on coral
reefs are substrate availability and grazing by herbivores, usually fish or invertebrates such as sea urchins.
The abundance and diversity of herbivores have been shown to be critical to long-term reef condition
around the world. In the Caribbean, overfishing of herbivorous fishes resulted in a low-diversity herbivore
community dominated by Diadema sea urchins. The sudden, regional scale die-off of sea urchins due
to disease resulted in rapid increases in algal abundance, with subsequent declines in coral populations
and failure to recover from disturbances®*®. Studies on the GBR have shown that herbivores are equally
critical to algal distributions (Figure 4.5)'¢37.4041.48496  Fortunately, pressure on herbivorous fishes is
currently minimal, so this important element of reef resilience remains largely intact.

4.3.1.3 Biological diversity

Marine ecosystems with high biological diversity will generally be relatively resilient, largely because
they will have more diverse responses and capacities available to them, which can provide the basis
for adaptation to new threats such as climate change. This diversity may be at a range of levels,
including genetic diversity within species, diversity of species within guilds (functional groups, such
as corals or herbivores), trophic diversity, and complexity and diversity of habitats. For example,
genetic diversity within a coral species, or diversity of the symbiotic zooxanthellae within a coral
population, may provide greater capacity for the coral population to survive diverse stresses, and
increase the likelihood of some individuals surviving a particular bleaching event*. Different species
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Figure 4.5 Effects of herbivory on resilience of a coral reef.3” A. The reef crest at Orpheus Island,
Great Barrier Reef, was severely damaged by mass bleaching in 1998,% resulting in overgrowth by
fine, filamentous turf algae (i). Over the next few years, coral populations recovered by recruitment
of new corals (ii) and by regrowth of surviving fragments (iii), with little impact from the filamentous
turfs. B. In contrast, when large fishes were excluded to simulate the effects of overfishing, there was
a dramatic overgrowth of Sargassum and other large, fleshy seaweeds, which reduced the growth
and recruitment of corals and inhibited recovery of the community.

and morphologies of coral have different susceptibilities to temperature-induced bleaching and to

other threats; a reef dominated by a few coral types may be more vulnerable to widespread damage
than a more diverse reef*. A reef with a diverse range of herbivores will have greater capacity to
remove or prevent outbreaks of different types of algae¢, and will be less vulnerable to events such as
the disease outbreak that killed Diadema sea urchins in the Caribbean. Diversity of habitats within an
ecosystem increases the likelihood of some habitats being less severely impacted by particular stresses
or disturbances*. For example, shallow reefs are often more vulnerable to storm damage and to coral
bleaching. Deeper reef areas or areas with more complex topography may provide refuges that can
be a source population for repopulating damaged areas.

Diversity within guilds has two aspects that underpin resilience: redundancy and response diversity.
Redundancy’70¢ describes the capacity of one species to functionally compensate for the loss of
another within a functional group. Some species that seem unimportant may become critical for
reorganisation when conditions change, whether slowly (eg increasing seawater temperature,
accumulation of nutrients) or abruptly (eg crown-of-thorns or disease out-breaks, hurricanes,
bleaching events). Thus, in the Caribbean herbivore example, the presence of sea urchins suppressed
algal overgrowth, even when herbivorous fishes were overexploited. The critical importance of
herbivorous fishes only became apparent when disease wiped out the sea urchins®* 8. However, if
all species are affected by a disturbance in the same way, even having a large number of species in
a functional group may not contribute to resilience. Response diversity?® describes the variability of
responses within functional groups to disturbance’. A wide range of responses enables some species
to compensate for others, which facilitates regeneration after a disturbance. Although it is not clear
to what extent aspects of biodiversity contribute to resilience, it is clear that different aspects will be
important under different circumstances.
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4.3.1.4 Connectivity

The capacity of reefs to recover after disturbances, or reorganise in the face of new stresses, depends
critically on the supply of larvae or propagules available to reseed populations of key organisms,
such as fish and corals*#¢. Most marine organisms have a planktonic larval phase, in which larvae
are dispersed by a combination of active behaviour, such as swimming, and passive transport by
ocean currents. Connectivity refers to the extent of the connections between reefs and source
populations, which may be other reefs or other habitats, such as coastal mangroves (for many fish),
inter-reef seafloor, or seagrass beds's5. Patterns of connectivity depend strongly on ocean currents,
the length of time that larvae remain viable in the plankton, and the existence of upstream habitats
with refuge source populations. Even if a reef is well protected and soundly managed, alterations in
the surrounding seascape may erode resilience if the supply of critical processes and functions, such
as coral recruitment, is cut off4’.

Over short spatial and temporal scales, connectivity provides for the dispersal of both larvae, enabling
recolonisation of sites, and adult organisms, potentially supporting ecological functions such as
herbivory. Recent studies indicate that reef populations are overwhelmingly self-seeding®'3, due to
a combination of hydrographic and biological properties that retain larvae and/or strongly dilute a
larval pool as it disperses from its source. When disturbances or stresses reduce the capacity for self-
seeding, connectivity plays a critical role.

At larger spatial and longer temporal scales, connectivity provides the means of exchange of genetic
material, and thus the currency of diversity, in space and time. Over multiple generations, connectivity
maintains genetic continuity within populations and species, and defines the biogeographic spread of
species. Resilience operates at many scales, and connectivity provides a mechanism for spreading and
sharing resilience properties among locations. Thus ‘connected’ locations influence one another to
varying extents in terms of resilience. Different ecosystem properties may operate across different scales,
and degradation in multiple parts of a seascape may be masked by overall connectivity and sharing of
resilience. Fragmentation of a seascape by the erosion of resilience in different locations may make the
overall ecosystem vulnerable. For example, if the connectivity of a critical process is undermined by a
disturbance event, the ecosystem may be pushed beyond a previously hidden threshold.5”

Connectivity may also reduce resilience, if it facilitates dispersal of undesirable factors, such as
disturbance, pollutants (eg nutrients) or organisms (eg diseases, algae, exotic species). The success
of undesirable, invasive species will depend on the resilience of individual reefs within the seascape
mosaic. Erosion of resilience at local scales may create dispersal refuges for undesirable organisms.

4.3.1.5 Refugia

Refugia are areas where ecosystems are unaffected by, or protected from, stressors or disturbances
that reduce resilience. Refugia help to maintain diversity and abundance by serving as sources for
replenishing the disturbed populations that underpin connectivity, and serve as stepping stones
for maintaining connectivity across larger scales. Important features of refugia include sufficient
location and separation distances to ensure connectivity, adequate extent to provide sufficient source
populations, and inclusion of comprehensive and representative examples of the different habitats
within a region3436:4,
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A primary tool in marine protected area management is establishing no-take zones that aim to
provide refuges from human stressors. They thus maintain the resilience of local sites, and of the
overall system, through connectivity with each other and with adjacent zones open to human
uses**36, While it is clear that a higher proportion of a seascape maintained within refugia will provide
greater protection on the whole, the nature of the relationship is as yet only approximately estimated.
However, the irreversibility and threshold behaviour discussed above suggest that insufficient refugia
will likely have serious long-term consequences®.

4.3.1.6 Water pollution and environmental quality

The quality of the chemical and physical environment is a strong determinant of resilience. A
poor-quality environment exacts significant costs to organisms in maintaining physiological health
and integrity and in maintaining ecosystem function. In particular, good water quality is critical to
the health of corals, and to ecological processes such as the recruitment of corals and coral-algal
competition, both of which are important for ecosystem resilience®®%2°. In most nearshore tropical
marine ecosystems, poor water quality is manifested as a long-term chronic increase in anthropogenic
inputs of nutrients, sediments and other pollutants®. Recent work has particularly emphasised the role
of excess organic carbon in reducing the resilience of coral populations*+s.

A considerable body of recent research suggests that a major impact of poor water quality is not in direct
effects on corals or coral-algal competition, but in the inhibition of recovery from other stresses and
disturbances®*7°. For example, after mass bleaching events, excess sediments and nutrients may inhibit
coral recruitment synergistically with increased algal growth, with the result that coral populations
re-establish too slowly to recover between disturbances?'. Suppressed physiological health may also
increase susceptibility to thermal stress and coral bleaching, given the metabolic costs of bleaching (the
loss of the photosynthetic zooxanthellae). Modelling work has shown that a ecosystem able to cope
with either frequent disturbances or eutrophication may show serious long-term degradation if the two
occur in combination, amounting to a critical loss of resilience (Figure 4.2)52.

From a management perspective, however, improving environmental quality provides one of the
most accessible tools for maximising resilience to many other threats, from chronic fishing pressure
to acute disturbances. In the classic case study of Kaneohe Bay in Hawaii, reductions in pollution
delivered to the relatively enclosed bay were followed by partial recovery of reefs from a degraded,
eutrophic state to a healthier condition®®. On the GBR, water quality is being addressed proactively
through the Reef Water Quality Protection Plan (see Section 4.6).

4.3.1.7 Aspects of resilience specific to climate change

As well as the general resilience factors discussed above, there are a number of environmental,
ecological and physiological factors that relate directly to climate change-specific threats’s=.
Most work to date has focused on thermal stress due to climate change; other impacts, especially
acidification, are likely to be important (Fabricius et al. Chapter 17). The factors listed below have been
shown to reduce thermal stress, coral bleaching or mortality in some cases. However, it is important
to recognise that these factors are not always sufficient, and that they do not act independently.
Addressing one in isolation of others, and of other processes that affect coral health and resilience, is
likely to be ineffective.
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Thermal protection

Some reef areas appear to avoid or be protected from the oceanographic conditions that induce
coral bleaching. This may be due to reduced water temperature, reduced light levels, and/or
increased flushing. At large scales, these conditions may be induced by oceanographic and climatic
features such as upwelling zones, current systems or regional climates that increase cloud cover,
storms or cyclonesss. At local scales, some corals and habitats appear to be protected from the worst
thermal conditions by local topographic features that provide shading, screening or other micro-
environmental variation?.

Thermal resistance

Some reef areas, zones, patches and individual corals appear to be resistant to thermal stress and
show less bleaching and/or mortality than other areas or corals under similar conditions. Resistance
may be related to intrinsic (genetic) or extrinsic (environmental) factors. Genetic factors include the
identity of the coral species and of the symbiotic zooxanthellae, and individual variation. In particular,
some clades (genetic groups) of zooxanthellae have been found to be more resistant to bleaching
than others®. Environmental factors include conditions that allow corals to acclimate to higher
temperatures or to variability in temperaturess>'s.

Bleaching tolerance

Some reef areas, zones, patches or individual corals appear to be more tolerant to bleaching and
suffer less mortality after bleaching than other areas or corals. Tolerance may also be related to
intrinsic or extrinsic factors, but appears to be distinct from resistance to thermal stressés.

These factors may be useful to reef managers in identifying and protecting areas of potential resistance
and resilience of coral reefs to climate change. For example, areas that appear to have survived or
recovered rapidly from previous bleaching might, in principle, be suitable sites for protection.
However, to date no two mass bleaching and mortality episodes at a site have followed very similar
patterns, so caution is needed and a range of resilience factors must be considered simultaneously,
including the predictability and regularity of their occurrence’s.

4.3.1.8 Minimising bleaching impacts at local scales

There can be no doubt that the most effective strategy to reduce bleaching impacts on coral reefs
is to minimise climate change drivers. However, given that significant change is now unavoidable,
it is also necessary to take every possible step to minimise the impacts of that change at local scales
by addressing the various factors outlined above. It is likely that the two strategies, proceeding in
tandem, may have synergistic benefits for reefs. Thus, in general terms Salm et al.** recommend
that managers (a) identify and protect from direct anthropogenic impacts, specific patches of reef
where local conditions are highly favourable for survival generally, and that also may be at reduced
risk of temperature-related bleaching and mortality and (b) locate such protected sites in places
that maximise their potential contribution to the recovery of damaged or vulnerable reefs that are
connected through larval dispersal.
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Table 4.1

R2—Reef Resilience Toolkit¢ A Global Protocol for Assessment and Monitoring of Coral

Bleaching®', A Reef Manager’s Guide to Coral Bleaching>* and

88

other approaches?s°

Managing for risk: representation
and replication—protecting
multiple examples of a full range
of reef types helps to ensure

1.

Use the ability to predict bleaching events to enhance coral
reef monitoring programs; try to obtain pre- and post-
bleaching data.

. . . 2. Establish monitoring protocols to answer specific questions
inclusion of representatives .

, about the causes and effects of bleaching events.
of the area’s total reef
biodiversity. Replication of 3. Use remote sensing tools to increase the level of
each reef type reduces the predictability.
chance of any one type being 4. Use the ability to predict bleaching events to gain the
completely compromised by an attention of the public and to solicit their assistance in coral
unmanageable impact such as a reef conservation.
major bleaching event.

) o 5. Use the severe impacts of coral bleaching as a way to
Refugla‘—ldennfymg and fu.lly leverage other conservation measures such as reducing
protecting coral communities point and non-point sources of pollution.
that demonstrate bleaching
resistance and that can thus 6. Use coral bleaching events as a way to increase the public’s
serve as refugia is an effective awarene.ss ahd.peer pres.sure as to the need to cease
way to facilitate reseeding and destructive fishing practices.
recovery of other areas that are 7. Contact coral reef users and encourage them to lessen their
seriously damaged by bleaching. direct impact on coral reefs during these stressful periods.
Connectivity—Ildentifying 8. Engage divers in providing education and outreach
patterns of connectivity among messages about coral reefs so they can take direct action to
source and sink reefs, so that lessen their physical impacts on the corals during stressful
these can be used to inform periods.
reef selection in the design of

. 9 9. Communicate the long-term impacts of coral bleaching to
marine protected area networks - . o .
. . reef users and solicit help in communicating to decision-

and provide stepping stones for ) . A

. ; makers the kinds of appropriate actions that need to be
larval dispersal over longer time ) .
§ . . . taken regarding climate change.
rames, is an important step in
building resilience into networks. 10. Identify coral reefs that are resistant to bleaching and

. develop criteria that will aid in the design of marine
Effective management— tected
Managing reefs for both protected areas.
health and resilience and 11. Establish fully protected reserves in areas resistant to coral
monitoring multiple indicators bleaching.

i t'he eﬁectll:/enbess offcurrent 12. Enlist the scientific community to assist in communicating
a;non; are the bases OrEff . the long-term trends that can be expected if current trends
adaptive mana.gement. ective of climate change continue.

management is fundamental to

the success of any conservation 13. Integrate the geological and biological sciences in such a

effort and the daily business of
managers’ work.

way as to hindcast our observations into geological times in
order to forecast the long-term expectations for coral reefs.
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More specifically with respect to mitigating climate change impacts, The Nature Conservancy’s
R2 toolkit: building resilience into coral reef conservation®® recommends a four-level approach
(see Table 4.1) that condenses practical application of lessons learned by marine protected area
managers during past bleaching events, such as those developed in the Florida Keys National Marine
Sanctuary®¢ and the GBR¢'53. The development of management approaches that emphasise resilience
and its application to mitigating the effects of climate change has accelerated with the recognition of
the potential for a resilience approach. Management approaches have advanced from making general
recommendations’¢¢* to providing increasingly technical and specific ones? %3, and are turning
towards specific recommendations for monitoring and assessment protocols for protected areas that
focus on climate-related and resilience indicators¢'.

4.3.1.9 Social and economic resilience and governance effects on ecological resilience

There are key points at which the ecological resilience of coral reef can be influenced by socio-
economic and governance factors (and vice versa)?*2'12, This discussion does not aim to fully
explore these aspects, or to discuss social, economic or governance issues generally (Fenton et al.
chapter 23), but rather to illustrate their relevance to ecological significance. Social and economic
conditions influence patterns of reef use and impacts, such as fishing practices and terrestrial
land management?'. Fishing practices may be carefully managed, as on the GBR, or may include
destructive fishing techniques such as the use of explosives, nets or cyanide. This will have major
consequences for the abundance, diversity and connectivity of key fish populations, as well as corals
(through direct damage from explosives, etc). Similarly, social and economic contexts are critical
to the nature of land management practices, such as land clearing and intensive use of chemical
fertilisers and pesticides in farming, and to the capacity of local communities to modify those practices
to reduce impacts on reefs or other habitats. Indeed, social and economic factors are the basis of
threats to ecosystem resilience, and effective management of those threats requires strategies that are
socially and economically sustainable’+2558,

In this context, the significance of governance arrangements is receiving increasing recognition.
Governance relates to the community’s capacity to make choices that impact on environmental
quality, biodiversity conservation and the like, and the efficacy of implementing those choices.
Although governance includes political will and the role of governments, it also includes broader
aspects, such as the engagement of various community sectors with reefs and their management.
Again, because all local threats to resilience relate to the activities of people, governance and its
efficacy directly influence whether resilience is undermined, preserved or strengthened' 62 27,

4.4 Resilience of non-reef tropical habitats, ecosystems
and processes

Although most scientific attention focuses on the coral reefs of the GBR, an estimated 94 percent of
the area of the Marine Park consists of habitats other than coral reefs. This area includes deep seabed,
shoals, sponge gardens, sand and mud bottom, deep water seagrass beds, beds and mounds of
the calcifying green seaweed Halimeda, continental shelf slopes and intertidal mudflats and seagrass
beds. Not surprisingly, little is known about the factors that contribute to the resilience of most
of these habitats; subsequent chapters in this volume assess the vulnerability of these habitats to
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climate change (Diaz-Pulido et al. chapter 7, Waycott et al. chapter 8, Kingsford and Welch chapter
18). However, the general principles of maintaining physical, ecological and chemical processes and
structures provide a strong starting point. The major pressures on these habitats are likely to include
trawling and line-fishing for top predator fishes, and effects of terrestrial runoff, principally in inshore
areas''. Trawling can dramatically disrupt the physical structure of sea bottom habitats, such as sponge
gardens and seagrass beds, and also alter ecological structure by removal of target and bycatch species.
The major impact of line-fishing is on food-web structure through the removal of top predators, many of
which are highly mobile and provide a basis for connectivity between habitat areas and types. Terrestrial
runoff contains increased loads of sediments, nutrients and pesticide pollutants (including herbicides),
which can interfere with the ecological functions of inshore habitats such as seagrass beds*'".

In the absence of better information, potential management responses to these pressures can initially
only focus on ensuring that sufficient proportions of the ecosystem are protected from the known and
likely pressures. These responses include establishing comprehensive, adequate, representative and
replicated refuges in spatial arrangements that provide a basis for connectivity, and seeking to reduce
excess runoff of sediments, nutrients and pesticides. Reduction of herbicide pollution is particularly
important for preserving the resilience of the extensive inshore intertidal seagrass beds'. Similarly,
mangrove forests face potetntial negative impacts from a range of climate related factors, with a range
of management measures to mitigate these climate related impacts possible.

4.5 Resilience in the context of species conservation

Many species of particular conservation interest, such as dugongs, turtles, sharks, dolphins and whales, are
highly vulnerable to human impacts. This is often due to the nature of their life cycles; they may have low rates
of reproduction, even under ideal conditions, or ‘bottlenecks’ that are particularly vulnerable to disruption,
such as turtle nesting sites. Although populations of these species may be resilient when abundant, many are
already strongly depressed due to intensive hunting or fishing, or other causes. Under such circumstances,
even with strong protection, rates of population recovery are unavoidably slow, and show little capacity for
improving resilience. This suggests that reducing or even completely removing pressures and stresses on
these species, and managing for resilience, is not likely to be sufficient to regenerate populations within a
few decades. This is a particular concern in the context of climate change, which is likely to exert significant
additional pressures (Chin and Kyne chapter 13, Hamann et al. chapter 15, Lawler et al. chapter 16) that
populations will have little capacity to absorb, adapt to, or recover from.

4.6 Management approaches to maintain resilience of the
Great Barrier Reef

On the GBR, management approaches have focused on critical issues considered to be threats to
the ecosystem, such as water quality, sustainability of fishing, and tourism activities®. However, it is
important to recognise that these management issues are not independent. For example, on coral reefs,
it is known that herbivorous fish can graze down enhanced growth of algae due to nutrient increases,
providing protection against algal exclusion of corals*'. Protecting fish populations thus provides
additional protection against terrestrial runoff of nutrients. Similarly, minimising pollution of reef waters
may maintain habitat for herbivorous fishesso.

a http://www.gbrmpa.gov.au/corp_site/info_services/publications/brochures/index.html
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The Great Barrier Reef Marine Park is jointly managed by the Australian Government and the Queensland
Government. The Great Barrier Reef Marine Park Authority focuses on protection of the ecosystems and
maintenance of the World Heritage values of the Marine Park, and the Queensland State Government
is responsible for day-to-day management, fisheries management and most catchment management
activities.

The Great Barrier Reef Marine Park Authority and the Queensland State Government have jointly
implemented the Reef Water Quality Protection Plan®, aimed at directly addressing terrestrial runoff
into the GBR. The Great Barrier Reef Marine Park Authority has also implemented a new Zoning Plan,
which increases protection of biodiversityc. Because this Zoning Plan provides increased protection for
fishes, it will also provide indirect support for the aims of the Reef Water Quality Protection Plan. The
integration of these and other measures will enhance the overall resilience of the ecosystem to deal
with a range of threats, not limited to the original issues, and in turn protect the sustainability of reef-
dependent industries and communities. Importantly, these threats include the impending impacts of
climate change (see subsequent chapters).

The Great Barrier Reef Marine Park Zoning Plan 2004

Aims to provide comprehensive, adequate, representative and replicated protection of biodiversity in
no-take areas, with 33 percent of the total area of the Marine Park in highly protected areas, and more
significantly, a minimum of 20 percent of each of the 70 bioregions?d. The main activities that are regulated
by the Zoning Plan include fishing, collecting, research, tourism, boating and shipping. Allocating a
relatively high proportion of refuge areas aims to maintain natural biodiversity, and, through careful design
of the Zoning Plan, ensure connectivity between relevant areas (eg fish spawning areas and habitats).

Reef Water Quality Protection Plan

A joint initiative by the Australian and Queensland Governments, the Reef Water Quality Protection
Plan aims to halt and reverse the decline in the quality of water entering the reef within ten years. This
initiative addresses a major component of ecosystem resilience, and importantly, requires most changes
to take place in the catchment upstream of the GBR. The GBR catchment lies outside the jurisdiction of
the Great Barrier Reef Marine Park Authority, and therefore implementation is largely the responsibility
of communities, rural industries and local governments.

Tourism and recreational use

Tourism and recreation are carefully managed and monitored by the Great Barrier Reef Marine Park
Authority through the Zoning Plan, Plans of Management in high use areas such as Cairns and the
Whitsunday Islands, limits on use (aimed at addressing carrying capacities), permits and environmental
impact assessment requirements for significant developments.

Fishery Management Plans

Primarily the responsibility of the Queensland State Government, these include Plans for Fin Fish and Coral
Reef Fisheries, with an Inshore Fisheries Management Plan currently in development. These plans focus on
fisheries, rather than ecosystem health, and the Great Barrier Reef Marine Park Authority works closely with
the State Government to ensure the plans are consistent with the need to protect the values of the GBR.

b http://www.gbrmpa.gov.au/corp_site/key_issues/water_quality/rwqpp.pdf
¢ http://www.gbrmpa.gov.au/corp_site/management/zoning
d http://www.gbrmpa.gov.au/corp_site/management/zoning/rap/rap/pdf/rap_overview_brochure.pdf
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Importantly, these various management initiatives are not implemented in isolation, but rather as
an integrated, ecosystem-based package of complementary measures. They seek to address the
cumulative impacts and interactions between impacts, and not just individual issues. As outlined
above, there are potentially powerful synergies in, for example, simultaneously minimising inputs
of sediments, nutrients and pesticides, and ensuring fish biodiversity and abundance is sufficient
to maintain processes such as herbivory. Inshore areas are especially vulnerable to over-use, and to
impacts of water quality, and so are carefully considered in both Plans of Management and Fisheries
Management Plans. Importantly, the broader community increasingly recognise the value of this
complementary and integrative approach over single-issue initiatives. In combination, these measures
enhance the resilience of the ecosystem to other stresses and enhance the links to social systems.
Thus, where previously managers were criticised for addressing water quality while climate change
was of even greater concern, it is increasingly understood that the best protection against current and
emerging threats, including climate change, is to ensure the ecosystem is as resilient as possible.

Also significant is the incorporation of adaptive management approaches into the management of
the GBR. Thus, both the Reef Water Quality Protection Plan and the new Zoning Plan were developed
in response to emerging scientific evidence that existing management activities were insufficient to
ensure the long-term resilience of the ecosystem. Emerging understanding of the biodiversity of
the GBR showed that previous zoning did not provide sufficient coverage of many bioregions. New
research and monitoring suggested that degradation of inshore habitats was the most likely outcome
of previous land-use practices®*. Management is continuing this adaptive approach, developing
monitoring and research programs to assess the adequacy and impacts of management actions
and strategies, as a basis for future policy development, refinement and adaptation. Included are
programs that focus on specific management initiatives, such as the Zoning Plan and the Reef Water
Quality Protection Plan, and programs that assess the overall status of the ecosystem, and the related
industries and communities.

4.7 Outlook: resilience in the face of changing climate

A key aspect of an adaptive management approach is the realisation of the emerging but urgent need
to prepare for the effects of global climate change on the GBR and its habitats. Effective measures to
achieve this will require the best possible information about the likely vulnerability to climate change
of the various ecosystems and taxa. The present volume is intended to make a start in compiling that
information, and clearly demonstrates that impacts are likely to be not only dramatic, but also very
difficult to predict with any precision. There is, and is likely to remain, considerable uncertainty about
the nature and extent of direct effects and of their interactions with other stressors. As an emerging
area of science, assessment of vulnerability to climate change tends to focus on direct effects of
climate change on systems and processes, perhaps considering interactions between impacts or
stressors (eg climate change and overfishing or eutrophication). However, climate change stressors
will also affect the ability of these systems and processes to respond to other stressors. This means
that the resilience of the various ecosystems and taxa is likely to be threatened to an unprecedented
extent. This, along with the considerable inherent uncertainty about these changes, will significantly
increase the challenge of adaptively managing and maintaining ecosystem integrity. Chapter 24 of
this volume (Marshall and Johnson) aims to take up this challenge.
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