24 research outputs found

    Controlled Production and Degradation of Selected Biomaterials

    Get PDF
    Předložená disertační práce se zabývá studiem produkce a degradace polymerních materiálů s využitím mikroorganismů. Hlavní pozornost je upřena ke studiu produkce polyesterů bakteriálního původu - polyhydroxyalkanoátů. Tyto materiály jsou akumulovány celou řadou bakterií jako zásobní zdroj uhlíku, energie a redukční síly. Díky svým mechanickým vlastnostem, kterými silně připomínají tradiční syntetické polymery jako jsou polyetylén nebo polypropylén, a také díky své snadné odbouratelnosti v přírodním prostředí, jsou polyhydroxyalkanoáty považovány za ekologickou alternativu k tradičním plastům vyráběným z ropy. Polyhydroxyalkanoáty mají potenciál najít řadu aplikací v průmyslu, zemědělství ale také v medicíně. Významná část předložené práce je zaměřena na produkci polyhydroxyalkanoátů z odpadních substrátů pocházejících především z potravinářských výrob. Testována byla odpadní syrovátka nebo odpadní oleje z různých zdrojů. Právě využití levných odpadních substrátů je strategií, která by mohla přispět ke snížení ceny polyhydroxyalkanoátů a tím usnadnit jejich masové rozšíření. Podle výsledků dosažených v této práci jsou právě odpadní olejové substráty velice perspektivní cestou k ekonomicky rentabilní biotechnologické produkci polyhydroxyalkanoátů. Další část předložené práce se zabývá studiu spojení metabolické role polyhydroxyalkanoátů a stresové odpovědi bakterií. V této práci bylo zjištěno, že expozice bakteriální kultury řízené dávce etanolu nebo peroxidu vodíku významně navýší dosažené výtěžky a to o přibližně 30 %. Po aplikaci výše zmíněných stresových faktorů došlo k aktivaci metabolických drah vedoucí k odbourání stresového faktoru z média. Výsledkem bylo navýšení poměru NAD(P)H/NAD(P)+, což vedlo k částečné inhibici Krebsova cyklu a naopak aktivaci biosyntetické dráhy polyhydroxyalkanoátů. Mimoto došlo k významnému navýšení molekulové hmotnosti výsledných materiálů. Podle těchto výsledků se regulovaná aplikace vhodně zvolených stresových podmínek zdá být zajímavou strategií, která vede nejen k navýšení celkových výtěžků, ale také významnému zlepšení vlastností polymeru. Poslední část disertační práce se zabývala studiem procesu biodegradace polyuretanových materiálů. Polyuretanové eleastomery byly modifikovány rozličnými biopolymery za účelem navýšení jejich biodegradability. Tyto materiály byly posléze vystaveny působení směsné termofilní kultury jako modelového systému, který simuluje přirozené konsorcium bakterií. Přítomnost testovaných materiálů v kultivačním médiu vedla k neobvyklým růstovým charakteristikám bakteriální kultury. V průběhu prvních několika dní byl růst kultury silně inhibován, nicméně po překonání této neobvykle dlouhé lag-fáze došlo k intenzivnímu nárůstu kultury. Hlavní podíl na hmotnostním úbytku testovaných materiálů během experimentů měl samovolný rozpad materiálů, nicméně byl pozorován i vliv bakteriální kultury, kdy míra biotické degradace závisela na použitém modifikačním činidle. Nejvyšší míra biotické degradace byla pozorována u polyuretanového materiálu modifikovaného acetylovanou celulózou. Lag-fáze byla způsobena uvolněním nezreagovaného katalyzátoru (dibutylcínlaurát) a polyolu do kultivačního média. Bakteriální kultura se však po čase dokázala na přítomnost toxických látek v médiu adaptovat nebo je dokázala eliminovat.Proposed dissertation thesis is aimed at the study of production and degradation of polymeric materials using microorganisms. The main attention is given to polyesters of bacterial origin - polyhydroxyalkanoates. These materials are accumulated by a wide variety of bacterial strains which use polyhydroxyalkanoates as a storage of carbon, energy and reducing power. Thanks to their mechanical properties, that are similar to those of traditional synthetic plastics such as polyethelene or polypropylene, and thanks to their biodegradability, polyhydroxyalkanoates are considered to be environmental-friendly alternative to traditional plastics of petrochemical origin. Thus, polyhydroxyalkanoates have many potential applications in industry, agriculture as well as in medicine. Important part of this thesis is focused on production of polyhydroxyalknotes from waste substrates coming from food industry. Among tested substrates was waste cheese whey or waste plant edible oils of different origin. Utilization of cheap waste substrates for polyhydroxyalkanoates production could facilitate economically feasible process of large scale production of polyhydroxyalkanoates. According to the results presented in this thesis, waste oils are very promising substrates for biotechnological production of polyhydroxyalkanoates. Next part of the thesis deals with involvement of polyhydroxyalkanoates into stress response of bacteria. It was observed, that exposition of bacterial culture to controlled dose of ethanol or hydrogen peroxide resulted in significantly enhanced yields (abut 30 %). After stress factors application, particular metabolic pathways involved in stress response were activated in order to endure stress conditions. Subsequently, NAD(P)H/NAD(P)+ ratio increased and, thus, Krebs cycle was partially inhibited whereas polyhydroxyalkanoates synthetic pathway was activated. Moreover, application of stress factors increased molecular weights of polymers. Therefore, strategy based on application of controlled dose of stress not only enhanced polymer yields, but, moreover, improved properties of materials. The last part of thesis describes the investigation of biodegradation of polyurethane elastomeric films modified by various biopolymers in presence of mixed thermophillic culture as a model of natural bacterial consortium. The presence of materials in cultivation medium resulted in delayed but intensive growth of bacterial culture. The unusually long lag-phase was caused by release of un-reacted polyether polyol and tin catalyst from materials. The main part of material degradation was caused by abiotic degradation of elastomeric films, nevertheless, also bacterial culture slightly contributed to material decomposition. The measure of biotic degradation strongly depended on type of used modification agent. The highest tendency to undergo biotic degradation was observed for elastomeric film modified by acetylated cellulose.

    The Multiple Roles of Polyphosphate in Ralstonia eutropha and Other Bacteria

    Get PDF
    An astonishing variety of functions has been attributed to polyphosphate (polyP) in prokaryotes. Besides being a reservoir of phosphorus, functions in exopolysaccharide formation, motility, virulence and in surviving various forms of stresses such as exposure to heat, extreme pH, oxidative agents, high osmolarity, heavy metals and others have been ascribed to polyP. In this contribution, we will provide a historical overview on polyP, will then describe the key proteins of polyP synthesis, the polyP kinases, before we will critically assess of the underlying data on the multiple functions of polyP and provide evidence that - with the exception of a P-storage-function - most other functions of polyP are not relevant for survival of Ralstonia eutropha, a biotechnologically important beta-proteobacterial species

    Production of Polyhydroxyalkanoates Using Hydrolyzates of Spruce Sawdust: Comparison of Hydrolyzates Detoxification by Application of Overliming, Active Carbon, and Lignite

    Get PDF
    Polyhydroxyalkanoates (PHAs) are bacterial polyesters which are considered biodegradable alternatives to petrochemical plastics. PHAs have a wide range of potential applications, however, the production cost of this bioplastic is several times higher. A major percentage of the final cost is represented by the price of the carbon source used in the fermentation. Burkholderia cepacia and Burkholderia sacchari are generally considered promising candidates for PHA production from lignocellulosic hydrolyzates. The wood waste biomass has been subjected to hydrolysis. The resulting hydrolyzate contained a sufficient amount of fermentable sugars. Growth experiments indicated a strong inhibition by the wood hydrolyzate. Over-liming and activated carbon as an adsorbent of inhibitors were employed for detoxification. All methods of detoxification had a positive influence on the growth of biomass and PHB production. Furthermore, lignite was identified as a promising alternative sorbent which can be used for detoxification of lignocellulose hydrolyzates. Detoxification using lignite instead of activated carbon had lower inhibitor removal efficiency, but greater positive impact on growth of the bacterial culture and overall PHA productivity. Moreover, lignite is a significantly less expensive adsorbent in comparison with activated charcoal and; moreover, used lignite can be simply utilized as a fuel to, at least partially, cover heat and energetic demands of fermentation, which should improve the economic feasibility of the process

    First Complete Genome of the Thermophilic Polyhydroxyalkanoates Producing Bacterium Schlegelella thermodepolymerans DSM 15344

    Get PDF
    Schlegelella thermodepolymerans is a moderately thermophilic bacterium capable of producing polyhydroxyalkanoates (PHA) – biodegradable polymers representing an alternative to conventional plastics. Here, we present the first complete genome of the type strain S. thermodepolymerans DSM 15344 that was assembled by hybrid approach using both, long (Oxford Nanopore) and short (Illumina) reads. The genome consists of a single 3,858,501bp long circular chromosome with GC content of 70.3%. Genome annotation identified 3,650 genes in total while 3,598 open reading frames belonged to protein coding genes. Functional annotation of the genome and division of genes into clusters of orthologous groups (COG) revealed a relatively high number of 1,013 genes with unknown function or unknown COG, which reflects the fact that only a little is known about thermophilic PHA producing bacteria on a genome level. On the other hand, 270 genes involved in energy conversion and production were detected. This group covers genes involved in catabolic processes which suggests capability of S. thermodepolymerans DSM 15344 to utilize and biotechnologically convert various substrates such as lignocellulose-based saccharides, glycerol, or lipids. Based on the knowledge of its genome, it can be stated that S. thermodepolymerans DSM 15344 is a very interesting, metabolically versatile bacterium with great biotechnological potential

    Enzymatic hydrolysis of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) scaffolds

    Get PDF
    Polyhydroxyalkanoates (PHAs) are hydrolyzable bio-polyesters. The possibility of utilizing lignocellulosic waste by-products and grape pomace as carbon sources for PHA biosynthesis was investigated. PHAs were biosynthesized by employing Cupriavidus necator grown on fructose (PHBV-1) or grape sugar extract (PHBV-2). Fifty grams of lyophilized grape sugar extract contained 19.2 g of glucose, 19.1 g of fructose, 2.7 g of pectin, 0.52 g of polyphenols, 0.51 g of flavonoids and 7.97 g of non-identified rest compounds. The grape sugar extract supported the higher production of biomass and modified the composition of PHBV-2. The biosynthesized PHAs served as matrices for the preparation of the scaffolds. The PHBV-2 scaffolds had about 44.2% lower crystallinity compared to the PHBV-1 scaffolds. The degree of crystallinity markedly influenced the mechanical behavior and enzymatic hydrolysis of the PHA scaffolds in the synthetic gastric juice and phosphate buffer saline solution with the lipase for 81 days. The higher proportion of amorphous moieties in PHBV-2 accelerated enzymatic hydrolysis. After 81-days of lasting enzymatic hydrolysis, the morphological changes of the PHBV-1 scaffolds were negligible compared to the visible destruction of the PHBV-2 scaffolds. These results indicated that the presence of pectin and phenolic moieties in PHBV may markedly change the semi-crystalline character of PHBV, as well as its mechanical properties and the course of abiotic or enzymatic hydrolysis. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.project SoMoPro [6SA18032]; European Union's Horizon 2020 Research and Innovation Program - South Moravian Region [665860]; project "Centre of Polymer System plus" - Ministry of Education, Youth and Sports of the Czech Republic-Program NPU I [LO1504

    Brewer's spent grain as a no-cost substrate for polyhydroxyalkanoates production: Assessment of pretreatment strategies and different bacterial strains

    Get PDF
    Polyhydroxyalkanoates (PHAs) are polyesters of significant interest due to their biodegradability and properties similar to petroleum-derived plastics, as well as the fact that they can be produced from renewable sources such as by-product streams. In this study, brewer's spent grain (BSG), the main by-product of the brewing industry, was subjected to a set of physicochemical pretreatments and their effect on the release of reducing sugars (RS) was evaluated. The RS obtained were used as a substrate for further PHA production in Burkholderia cepacia, Bacillus cereus, and Cupriavidus necator in liquid cultures. Although some pretreatments proved efficient in releasing RS (acid-thermal pretreatment up to 42.1 gRS L-1 and 0.77 gRS g(-1) dried BSG), the generation of inhibitors in such scenarios likely affected PHA production compared with the process run without pretreatment (direct enzymatic hydrolysis of BSG). Thus, the maximum PHA accumulation from BSG hydrolysates was found in the reference case with 0.31 +/- 0.02 g PHA per g cell dried weight, corresponding to 1.13 +/- 0.06 g L-1 and a PHA yield of 23 +/- 1 mg g(-1) BSG. It was also found that C. necator presented the highest PHA accumulation of the tested strains followed closely by B. cepacia, reaching their maxima at 48 h. Although BSG has been used as a source for other bioproducts, these results show the potential of this by-product as a no-cost raw material for producing PHAs in a waste valorization and circular economy scheme
    corecore