251 research outputs found
Measuring Electric Fields From Surface Contaminants with Neutral Atoms
In this paper we demonstrate a technique of utilizing magnetically trapped
neutral Rb-87 atoms to measure the magnitude and direction of stray electric
fields emanating from surface contaminants. We apply an alternating external
electric field that adds to (or subtracts from) the stray field in such a way
as to resonantly drive the trapped atoms into a mechanical dipole oscillation.
The growth rate of the oscillation's amplitude provides information about the
magnitude and sign of the stray field gradient. Using this measurement
technique, we are able to reconstruct the vector electric field produced by
surface contaminants. In addition, we can accurately measure the electric
fields generated from adsorbed atoms purposely placed onto the surface and
account for their systematic effects, which can plague a precision
surface-force measurement. We show that baking the substrate can reduce the
electric fields emanating from adsorbate, and that the mechanism for reduction
is likely surface diffusion, not desorption.Comment: 7 pages, 6 figures, published in Physical Review
Thermally Induced Losses in Ultra-Cold Atoms Magnetically Trapped Near Room-Temperature Surfaces
We have measured magnetic trap lifetimes of ultra-cold Rb87 atoms at
distances of 5-1000 microns from surfaces of conducting metals with varying
resistivity. Good agreement is found with a theoretical model for losses
arising from near-field magnetic thermal noise, confirming the complications
associated with holding trapped atoms close to conducting surfaces. A
dielectric surface (silicon) was found in contrast to be so benign that we are
able to evaporatively cool atoms to a Bose-Einstein condensate by using the
surface to selectively adsorb higher energy atoms.Comment: Improved theory curve eliminates discrepancy. JLTP in pres
Measurement of the Temperature Dependence of the Casimir-Polder Force
We report on the first measurement of a temperature dependence of the
Casimir-Polder force. This measurement was obtained by positioning a nearly
pure 87-Rb Bose-Einstein condensate a few microns from a dielectric substrate
and exciting its dipole oscillation. Changes in the collective oscillation
frequency of the magnetically trapped atoms result from spatial variations in
the surface-atom force. In our experiment, the dielectric substrate is heated
up to 605 K, while the surrounding environment is kept near room temperature
(310 K). The effect of the Casimir-Polder force is measured to be nearly 3
times larger for a 605 K substrate than for a room-temperature substrate,
showing a clear temperature dependence in agreement with theory.Comment: 4 pages, 4 figures, published in Physical Review Letter
Automatic threshold determination for a local approach of change detection in long-term signal recordings
CUSUM (cumulative sum) is a well-known method that can be used to detect changes in a signal when the parameters of this signal are known. This paper presents an adaptation of the CUSUM-based change detection algorithms to long-term signal recordings where the various hypotheses contained in the signal are unknown. The starting point of the work was the dynamic cumulative sum (DCS) algorithm, previously developed for application to long-term electromyography (EMG) recordings. DCS has been improved in two ways. The first was a new procedure to estimate the distribution parameters to ensure the respect of the detectability property. The second was the definition of two separate, automatically determined thresholds. One of them (lower threshold) acted to stop the estimation process, the other one (upper threshold) was applied to the detection function. The automatic determination of the thresholds was based on the Kullback-Leibler distance which gives information about the distance between the detected segments (events). Tests on simulated data demonstrated the efficiency of these improvements of the DCS algorithm
Alkali Adsorbate Polarization on Conducting and Insulating Surfaces Probed with Bose-Einstein Condensates
A magnetically trapped 87Rb Bose-Einstein condensate is used as a sensitive probe of short-range electrical forces. In particular, the electric polarization of, and the subsequent electric field generated by, 87Rb adsorbates on conducting and insulating surfaces is measured by characterizing perturbations to the magnetic trapping potential using high quality factor condensate excitations. The nature of the alterations to the electrical properties of Rb adsorbates is studied on titanium (metal) and silicon (semiconductor) surfaces, which exhibit nearly identical properties, and on glass (insulator), which displays a smaller transitory electrical effect. The limits of this technique in detecting electrical fields and ramifications for measurements of short-range forces near surfaces are discussed
Einfluss von Betonzusatzmitteln auf die Energieund CO2-Bilanz von Beton
The energy consumption and the C02 emissions during the production of two different concrete mixes with identical concrete properties were compared. The two concrete samples were prepared with and without the addition of a superplasticizer. Less energy was consumed and less C02 was emitted for the case of concrete production including a superplasticizer as compared to the case of concrete production without a superplasticizer. This is due to the fact, that when a superplasticizer is used, less cement is needed to produce concrete with the same properties as those of concrete without superplasticizers. However, the relatively small dijferences in the energy consumption and in the C02 emissions become insignificant, if the entire life cycle of a building is considered. Effects like durability and the need for maintenance are expected to have a much higher influence on the life cycle assessment of concrete building
Real-time lattice boltzmann shallow waters method for breaking wave simulations
We present a new approach for the simulation of surfacebased fluids based in a hybrid formulation of Lattice Boltzmann Method for Shallow Waters and particle systems. The modified LBM can handle arbitrary underlying terrain conditions and arbitrary fluid depth. It also introduces a novel method for tracking dry-wet regions and moving boundaries. Dynamic rigid bodies are also included in our simulations using a two-way coupling. Certain features of the simulation that the LBM can not handle because of its heightfield nature, as breaking waves, are detected and automatically turned into splash particles. Here we use a ballistic particle system, but our hybrid method can handle more complex systems as SPH. Both the LBM and particle systems are implemented in CUDA, although dynamic rigid bodies are simulated in CPU. We show the effectiveness of our method with various examples which achieve real-time on consumer-level hardware.Peer ReviewedPostprint (author's final draft
Diffuse reflection of a Bose-Einstein condensate from a rough evanescent wave mirror
We present experimental results showing the diffuse reflection of a
Bose-Einstein condensate from a rough mirror, consisting of a dielectric
substrate supporting a blue-detuned evanescent wave. The scattering is
anisotropic, more pronounced in the direction of the surface propagation of the
evanescent wave. These results agree very well with theoretical predictions.Comment: submitted to J Phys B, 10 pages, 6 figure
A trapped-ion local field probe
We introduce a measurement scheme that utilizes a single ion as a local field
probe. The ion is confined in a segmented Paul trap and shuttled around to
reach different probing sites. By the use of a single atom probe, it becomes
possible characterizing fields with spatial resolution of a few nm within an
extensive region of millimeters. We demonstrate the scheme by accurately
investigating the electric fields providing the confinement for the ion. For
this we present all theoretical and practical methods necessary to generate
these potentials. We find sub-percent agreement between measured and calculated
electric field values
Towards surface quantum optics with Bose-Einstein condensates in evanescent waves
We present a surface trap which allows for studying the coherent interaction
of ultracold atoms with evanescent waves. The trap combines a magnetic Joffe
trap with a repulsive evanescent dipole potential. The position of the magnetic
trap can be controlled with high precision which makes it possible to move
ultracold atoms to the surface of a glass prism in a controlled way. The
optical potential of the evanescent wave compensates for the strong attractive
van der Waals forces and generates a potential barrier at only a few hundred
nanometers from the surface. The trap is tested with Rb Bose-Einstein
condensates (BEC), which are stably positioned at distances from the surfaces
below one micrometer
- …