64 research outputs found

    Measuring an artificial intelligence agent's trust in humans using machine incentives

    Full text link
    Scientists and philosophers have debated whether humans can trust advanced artificial intelligence (AI) agents to respect humanity's best interests. Yet what about the reverse? Will advanced AI agents trust humans? Gauging an AI agent's trust in humans is challenging because--absent costs for dishonesty--such agents might respond falsely about their trust in humans. Here we present a method for incentivizing machine decisions without altering an AI agent's underlying algorithms or goal orientation. In two separate experiments, we then employ this method in hundreds of trust games between an AI agent (a Large Language Model (LLM) from OpenAI) and a human experimenter (author TJ). In our first experiment, we find that the AI agent decides to trust humans at higher rates when facing actual incentives than when making hypothetical decisions. Our second experiment replicates and extends these findings by automating game play and by homogenizing question wording. We again observe higher rates of trust when the AI agent faces real incentives. Across both experiments, the AI agent's trust decisions appear unrelated to the magnitude of stakes. Furthermore, to address the possibility that the AI agent's trust decisions reflect a preference for uncertainty, the experiments include two conditions that present the AI agent with a non-social decision task that provides the opportunity to choose a certain or uncertain option; in those conditions, the AI agent consistently chooses the certain option. Our experiments suggest that one of the most advanced AI language models to date alters its social behavior in response to incentives and displays behavior consistent with trust toward a human interlocutor when incentivized

    Adverse weather amplifies social media activity

    Full text link
    Humanity spends an increasing proportion of its time interacting online. Scholars are intensively investigating the societal drivers and resultant impacts of this collective shift in our allocation of time and attention. Yet, the external factors that regularly shape online behavior remain markedly understudied. Do environmental factors alter rates of online activity? Here we show that adverse meteorological conditions markedly increase social media use in the United States. To do so, we employ climate econometric methods alongside over three and a half billion social media posts from tens of millions of individuals from both Facebook and Twitter between 2009 and 2016. We find that more extreme temperatures and added precipitation each independently amplify social media activity. Weather that is adverse on both the temperature and precipitation dimensions produces markedly larger increases in social media activity. On average across both platforms, compared to the temperate weather baseline, days colder than -5{\deg}C with 1.5-2cm of precipitation elevate social media activity by 35%. This effect is nearly three times the typical increase in social media activity observed on New Year's Eve in New York City. We observe meteorological effects on social media participation at both the aggregate and individual level, even accounting for individual-specific, temporal, and location-specific potential confounds

    Weather impacts expressed sentiment

    Get PDF
    We conduct the largest ever investigation into the relationship between meteorological conditions and the sentiment of human expressions. To do this, we employ over three and a half billion social media posts from tens of millions of individuals from both Facebook and Twitter between 2009 and 2016. We find that cold temperatures, hot temperatures, precipitation, narrower daily temperature ranges, humidity, and cloud cover are all associated with worsened expressions of sentiment, even when excluding weather-related posts. We compare the magnitude of our estimates with the effect sizes associated with notable historical events occurring within our data.This work was supported by Ministerio de Economía y Competitividad: FIS2013-47532-C3-3-P, FIS2016-78904-C3-3-P (http://www.mineco.gob.es/); and National Science Foundation DGE0707423, TG-SES130013, 0903551 (https://www.nsf.gov/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
    corecore