6 research outputs found

    Laboratory Diagnosis of Candidiasis

    Get PDF
    The burden of Candidiasis continues to increase and so does the Candida species. Although Candida species are closely similar phenotypically, they differ from each other in terms of epidemiology, genetic characteristics, antifungal susceptibility and virulence profile. Therefore, reliable and accurate laboratory methods for identification of Candida species can determine the Candidiasis burden and enable the administration of the most appropriate antifungal drug therapy to reduce fungal mortality rates. Conventional and biochemical methods are often used in identification of Candida species. However, these techniques are specific and sensitive enough in detecting the non albicans candida (NAC) species. Molecular techniques have improved the laboratory diagnosis and management of Candidiasis due to improved sensitivity and specificity threshold. This chapter provides an overview of different laboratory methods for diagnosis of Candidiasis

    Genome-wide association analysis of cystatin-C kidney function in continental Africa

    Get PDF
    BACKGROUND: Chronic kidney disease is becoming more prevalent in Africa, and its genetic determinants are poorly understood. Creatinine-based estimated glomerular filtration rate (eGFR) is commonly used to estimate kidney function, modelling the excretion of the endogenous biomarker (creatinine). However, eGFR based on creatinine has been shown to inadequately detect individuals with low kidney function in Sub-Saharan Africa, with eGFR based on cystatin-C (eGFRcys) exhibiting significantly superior performance. Therefore, we opted to conduct a GWAS for eGFRcys. METHODS: Using the Uganda Genomic Resource, we performed a genome-wide association study (GWAS) of eGFRcys in 5877 Ugandans and evaluated replication in independent studies. Subsequently, putative causal variants were screened through Bayesian fine-mapping. Functional annotation of the GWAS loci was performed using Functional Mapping and Annotation (FUMA). FINDINGS: Three independent lead single nucleotide polymorphisms (SNPs) (P-value 99%. The rs911119 SNP maps to the cystatin C gene and has been previously associated with eGFRcys among Europeans. With gene-set enrichment analyses of the olfactory receptor family 51 overlapping genes, we identified an association with the G-alpha-S signalling events. INTERPRETATION: Our study found two previously unreported associated SNPs for eGFRcys in continental Africans (rs59288815 and rs4277141) and validated a previously well-established SNP (rs911119) for eGFRcys. The identified gene-set enrichment for the G-protein signalling pathways relates to the capacity of the kidney to readily adapt to an ever-changing environment. Additional GWASs are required to represent the diverse regions in Africa. FUNDING: Wellcome (220740/Z/20/Z)

    Airway microbiome-immune crosstalk in chronic obstructive pulmonary disease

    Get PDF
    Chronic Obstructive Pulmonary Disease (COPD) has significantly contributed to global mortality, with three million deaths reported annually. This impact is expected to increase over the next 40 years, with approximately 5 million people predicted to succumb to COPD-related deaths annually. Immune mechanisms driving disease progression have not been fully elucidated. Airway microbiota have been implicated. However, it is still unclear how changes in the airway microbiome drive persistent immune activation and consequent lung damage. Mechanisms mediating microbiome-immune crosstalk in the airways remain unclear. In this review, we examine how dysbiosis mediates airway inflammation in COPD. We give a detailed account of how airway commensal bacteria interact with the mucosal innate and adaptive immune system to regulate immune responses in healthy or diseased airways. Immune-phenotyping airway microbiota could advance COPD immunotherapeutics and identify key open questions that future research must address to further such translation
    corecore