287 research outputs found

    Measuring and engineering entropy and spin squeezing in weakly linked Bose-Einstein condensates

    Get PDF
    We propose a method to infer the single-particle entropy of bosonic atoms in an optical lattice and to study the local evolution of entropy, spin squeezing, and entropic inequalities for entanglement detection in such systems. This method is based on experimentally feasible measurements of non-nearest-neighbour coherences. We study a specific example of dynamically controlling atom tunneling between selected sites and show that this could potentially also improve the metrologically relevant spin squeezing

    Schwinger pair production with ultracold atoms

    Get PDF
    We consider a system of ultracold atoms in an optical lattice as a quantum simulator for electron-positron pair production in quantum electrodynamics (QED). For a setup in one spatial dimension, we investigate the nonequilibrium phenomenon of pair production including the backreaction leading to plasma oscillations. Unlike previous investigations on quantum link models, we focus on the infinite-dimensional Hilbert space of QED and show that it may be well approximated by experiments employing Bose-Einstein condensates interacting with fermionic atoms. The calculations based on functional integral techniques give a unique access to the physical parameters required to realize the QED phenomena in a cold atom experiment. In particular, we use our approach to consider quantum link models in a yet unexplored parameter regime and give bounds for their ability to capture essential features of the physics. The results suggest a paradigmatic change towards realizations using coherent many-body states rather than single atoms for quantum simulations of high-energy particle physics phenomena.Comment: 5 pages, 4 figures, PLB versio

    Implementing quantum electrodynamics with ultracold atomic systems

    Get PDF
    We discuss the experimental engineering of model systems for the description of QED in one spatial dimension via a mixture of bosonic 23^{23}Na and fermionic 6^6Li atoms. The local gauge symmetry is realized in an optical superlattice, using heteronuclear boson-fermion spin-changing interactions which preserve the total spin in every local collision. We consider a large number of bosons residing in the coherent state of a Bose-Einstein condensate on each link between the fermion lattice sites, such that the behavior of lattice QED in the continuum limit can be recovered. The discussion about the range of possible experimental parameters builds, in particular, upon experiences with related setups of fermions interacting with coherent samples of bosonic atoms. We determine the atomic system's parameters required for the description of fundamental QED processes, such as Schwinger pair production and string breaking. This is achieved by benchmark calculations of the atomic system and of QED itself using functional integral techniques. Our results demonstrate that the dynamics of one-dimensional QED may be realized with ultracold atoms using state-of-the-art experimental resources. The experimental setup proposed may provide a unique access to longstanding open questions for which classical computational methods are no longer applicable

    Spontaneous symmetry breaking of gap solitons in double-well traps

    Full text link
    We introduce a two dimensional model for the Bose-Einstein condensate with both attractive and repulsive nonlinearities. We assume a combination of a double well potential in one direction, and an optical lattice along the perpendicular coordinate. We look for dual core solitons in this model, focusing on their symmetry-breaking bifurcations. The analysis employs a variational approximation, which is verified by numerical results. The bifurcation which transforms antisymmetric gap solitons into asymmetric ones is of supercritical type in the case of repulsion; in the attraction model, increase of the optical latttice strength leads to a gradual transition from subcritical bifurcation (for symmetric solitons) to a supercritical one.Comment: 6 pages, 5 figure
    • …
    corecore