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We consider a system of ultracold atoms in an optical lattice as a quantum simulator for electron–
positron pair production in quantum electrodynamics (QED). For a setup in one spatial dimension, we 
investigate the nonequilibrium phenomenon of pair production including the backreaction leading to 
plasma oscillations. Unlike previous investigations on quantum link models, we focus on the infinite-
dimensional Hilbert space of QED and show that it may be well approximated by experiments employing 
Bose–Einstein condensates interacting with fermionic atoms. Numerical calculations based on functional 
integral techniques give a unique access to the physical parameters required to realize QED phenomena 
in a cold atom experiment. In particular, we use our approach to consider quantum link models in a 
yet unexplored parameter regime and give bounds for their ability to capture essential features of the 
physics. The results suggest a paradigmatic change towards realizations using coherent many-body states 
for quantum simulations of high-energy particle physics phenomena.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The creation of electron–positron pairs from the vacuum of 
quantum electrodynamics in an external electric field is a long-
standing prediction that has not yet been directly observed [1,2]. 
Upcoming experimental laser facilities, such as the Extreme Light 
Infrastructure (ELI) [3], start approaching the required critical field 
strength of Ec ∼ 1016 V/cm. Theoretically, the non-linear interplay 
of the produced many-body states and the applied field repre-
sents a remarkable challenge with important links to a wide range 
of elusive phenomena such as Unruh and Hawking radiation or 
string-breaking in quantum chromodynamics (QCD) [4–6].

Whilst the critical field strength Ec = M2/e is determined by 
the electron/positron mass M and the absolute value of the electric 
charge e in QED, the pair-production phenomenon essentially de-
pends on the dimensionless ratio E/Ec � 1 for an applied electric 
field E . In principle, physical systems with very different char-
acteristic scales can thus be used to realize the underlying phe-
nomenon. It has recently been suggested to employ a system of 
ultracold atoms in an optical lattice to study the physics of pair 
production and string breaking [7,8]. Even though the implemen-
tation of a gauge symmetry in an atomic setup is demanding in 
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general [9–11], it may provide a unique way of answering crucial 
open questions, such as regarding the nonequilibrium dynamics 
of the strong and electroweak sector of the standard model of 
particle physics probed in heavy-ion collision experiments or early-
universe cosmology [12,13].

Many proposals concentrate on quantum link models [14]
rather than QED, or even QCD. Since the Hilbert space of a quan-
tum link model is finite-dimensional, the mapping to atomic sys-
tems is expected to be greatly facilitated. However, it is a crucial 
question how much of the physics of the infinite-dimensional rep-
resentation corresponding to QED may be captured in practice. 
Theoretical estimates based on diagonalization or matrix product 
states techniques are typically limited to low-dimensional rep-
resentations [15–17]. Recently, powerful functional integral (FI) 
techniques have been employed to simulate the real-time dynam-
ics of pair production and string-breaking directly in QED on a 
one-dimensional lattice [18–20], and in three dimensions [21]. This 
progress has become possible since strong bosonic fields can be ef-
ficiently sampled from coherent classical fields while keeping the 
full quantum nature of fermions [18,22].

In this work, we exploit this observation and start from the 
infinite-dimensional representation of the QED gauge group, point-
ing out that it may be well approximated by experiments using 
Bose–Einstein condensates interacting with fermionic atoms. For 
the first time, by using FI techniques we can estimate the physi-
cal parameters required to describe the QED phenomenon of pair 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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production in a cold atom setup and we discuss the experimental 
realization. For this paradigmatic example, numerical studies using 
the FI approach are still feasible and serve as an important bench-
mark for future quantum simulation experiments in numerically 
inaccessible regimes. In particular, we use our approach to con-
sider quantum link models in a yet unexplored parameter range 
and to give bounds for the dimensionality of the employed repre-
sentation in order to capture essential features of strong-field QED 
in those formulations [16].

While the FI techniques can also be applied in higher dimen-
sions and non-Abelian gauge theories [21], we focus here on the 
conceptually important example of QED in one spatial dimen-
sion [23,24]. Since there are no spatial plaquette terms in this 
case, angular momentum conserving atomic scattering processes 
can be used to directly implement the U (1) gauge symmetry [14]. 
From a phenomenological point of view, this theory shares key 
properties with QCD as, e.g., dynamical string breaking, and hence 
provides valuable insights into nonequilibrium aspects of the the-
ory of strong interactions.

2. Cold atom gauge theory

We start with the Hamiltonian formulation of lattice QED using 
the staggered fermion discretization [24]. To this end, the spinors 
are decomposed such that particle and antiparticle components 
separately reside on two neighboring sites of the lattice. Intro-
ducing the operators for the fermion field ψn , the link Un being 
connected to the gauge potential An and the electric field En , the 
Hamiltonian reads

HQED =
∑

n

{a

2
E2

n + M(−1)nψ
†
nψn

− i

2a

[
ψ

†
n Unψn+1 − ψ

†
n+1U †

nψn

]}
, (1)

where a is the lattice spacing and g the gauge coupling. The dy-
namical variables of QED fulfill [En, Um] = gδnmUm . The Gauss-law 
operator Gn = En − En−1 − gψ

†
nψn commutes with the Hamiltonian 

[Gn, HQED] = 0. The last relation manifests local gauge invariance.
To make contact with quantum link models, we approximate 

QED by another theory, which is still gauge invariant and allows 
for an experimental realization with cold atoms [14,25]. We sub-
stitute En → gLz , Un → [�(� + 1)]−1/2L+,n , where (Lx,n, L y,n, Lz,n)

are quantum spin operators which obey [Li,n, L j,m] = iδnmεi jk Lk,n , 
and the raising operator is L+,n = Lx,n + iL y,n . The performed sub-
stitution renders the dimension of the local Hilbert space finite-
dimensional. Consequently, the QED relation [Un, U †

m] = 0 is no 
longer valid but is replaced by [L+,n, L−,m] = 2δnm Lz,m . Remark-
ably, local gauge invariance is not affected.

The Schwinger representation of the angular momentum op-
erators allows us to express the quantum spins by bosonic de-
grees of freedom bn and dn [26]: L+,n = b†

ndn , L−,n = d†
nbn and 

Lz,n = (b†
nbn − d†

ndn)/2, with the constraint b†
nbn + d†

ndn = 2�. Here, 
� denotes the spin magnitude fixing the number of bosonic atoms. 
In this representation, the Hamiltonian describing the cold atom 
(CA) system becomes

HCA =
∑

n

{ g2a

4
[b†

nb†
nbnbn + d†

nd†
ndndn] + M(−1)nψ

†
nψn

− i

2a
√

�(� + 1)

[
ψ

†
nb†

ndnψn+1 − ψ
†
n+1d†

nbnψn

]}
(2)

and depends on two species of bosonic operators bn, dn living on 
links and fermionic operators ψn located on lattice sites. The pa-
rameters are determined by the basic physical quantities of the 
cold atom system, such as the gauge coupling g given by the 
on-site scattering processes of the bosons and the spin-changing 
collisions between the fermionic and bosonic atoms.

Employing the density-phase representation with bn =√
� + δρb,neiθb,n and dn = √

� + δρd,neiθd,n , one finds HCA = HQED +
O(δρ/�). Therefore, the number of bosonic atoms per site, 2�, con-
trols the approximation and allows to tune from the quantum link 
formulation to lattice QED by increasing �.

In previous work, the Hamiltonian (2) was studied for � ∼ O(1)

via diagonalization or matrix product states methods [8,15–17,27]. 
Here we consider for the first time the dynamics in the regime 
� � 1 to approach lattice QED. From an experimental point of view, 
this regime corresponds to putting Bose–Einstein condensates on 
the links rather than single bosonic atoms.

3. Functional integral approach

To study the strong-field regime of QED, the field strength 
needs to be of the order of the critical field Ec = M2/g . The corre-
sponding cold atom setup is characterized by Ec = g|Nb − Nd|/2 ∼
M2/g , where Nb, Nd denote the number of atoms in the Bose–
Einstein condensates. For Nb, Nd ∼ O(�) � 1, the FI approach of 
Refs. [18,20–22,28] allows us to study the dynamics in this regime.

To this end, we denote the bosonic fields collectively by φn =(
b†

n,bn,d†
n,dn

)
and define the generating functional for correlation 

functions in the presence of sources Jn = (
Jb,n, J∗

b,n, Jd,n, J∗
d,n

)
by Z [ J ] = Tr{ρ0TCei J ·φ}. Here, ρ0 is the initial density matrix, 
J · φ = ∑

n

∫
t Jn(t) · φn(t) with t the time coordinate along the 

closed time path C , and TC denotes time-ordering along C . Em-
ploying the coherent state basis, the matrix element of the density 
operator at initial time is 〈+|ρ0 |−〉, where |+〉 and |−〉 are the 
first coherent states on the forward and backward contour, respec-
tively. The FI representation of the generating functional is

Z [ J ] =
∫

[dφ][dψ†dψ] 〈+|ρ0 |−〉 eiS+i J ·φ (3)

with the action

S =
∫

t

∑
n

(ψ
†
ni∂tψn + b†

ni∂tbn + d†
ni∂tdn) − HCA . (4)

We analytically perform the Gaussian integral for the fermions 
and then expand to first order in the bosonic response field φ̃n , 
which arises from the Keldysh rotation φn = φ̄n + sgnC φ̃n . Disre-
garding higher-order terms, i.e. neglecting subleading corrections 
in bosonic occupancies [21] that are suppressed by N−1

b , N−1
d 	 1, 

leads to the self-consistent set of equations

i∂tbn = g2a

2
b†

nbnbn + i
dn Fn+1 n

4a
√

�(� + 1)
,

i∂tdn = g2a

2
d†

ndndn − i
bn Fn n+1

4a
√

�(� + 1)
,

i∂t Fnm =
∑

n′

[
hCA

nn′ Fn′m − Fnn′hCA
n′m

]
. (5)

Here, Fnm = 〈[ψn,ψ
†
m]〉 is the fermion equal-time correlation func-

tion, whose evolution is governed by

hCA
nm = i[d†

n−1bn−1δn−1 m − b†
ndnδn+1 m]

2a
√

�(� + 1)
+ M(−1)nδn m.

The equations (5) preserve the Gauss law, ∂t Gn = 0, if initialized 
accordingly. A similar derivation for the QED Hamiltonian (1) gives
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Fig. 1. Time evolution of the fermion number density in the cold atom system 
for different numbers of atoms ∼ � as compared to the QED result (� → ∞). The 
straight line corresponds to the Schwinger formula, which neglects the backreaction 
of the produced fermions on the applied field.

∂t En = g

2a
Re[Fn+1 nUn],

∂t Un = igaEnUn ,

i∂t Fnm =
∑

n′
[hQED

nn′ Fn′m − Fnn′hQED
n′m ] , (6)

with

hQED
nm = i

2a
[U∗

n−1δn−1 m − Unδn+1 m] + M(−1)nδn m .

In fact, by taking the time derivative of En → g(b†
nbn −d†

ndn)/2 and 
Un → b†

ndn and inserting the density-phase representation, one 
finds that (5) approximates (6) with a truncation error of O(δρ/�). 
In the following, we keep � as a parameter to answer the question 
whether essential properties of QED can be captured for finite �.

4. Pair production

The creation of electron–positron pairs in a uniform electric 
field E may be viewed as a quantum process in which virtual 
electron–positron dipoles can be separated to become real pairs 
once they gain the binding energy of twice the rest mass en-
ergy. This QED process has been estimated [1,2] neglecting the 
backreaction of the produced pairs on the applied field, and the 
analytic result for the rate ṅ = M2 E/(2π Ec) exp(−π Ec/E) is de-
picted in Fig. 1.

This estimate should be valid at sufficiently early times and 
provides an important benchmark for any simulation method. 
Therefore, we consider a spatial lattice of length Na with peri-
odic boundary conditions and leave more refined estimates taking 
into account specific trap geometries of cold atom systems for fur-
ther studies. We first compute the real-time evolution according 
to (5) for g/M = 0.1 and aM = 0.005 in the limit � → ∞, where 
it agrees to QED described by (6). Here N determines the number 
of fermionic atoms, and we checked that for the largest employed 
lattices with N = 512 no significant volume dependence can be 
observed and our results are insensitive to changes in the lattice 
spacing. Accordingly, employing a standard definition of the parti-
cle number density [18,21] the simulation result for QED (� = ∞) 
as shown in Fig. 1 agrees well with the Schwinger formula at 
early times. At later times the backreaction of the produced pairs 
on the applied field is seen to give the expected sizable correc-
tions [18,19].

Of course, in the corresponding cold atom system no particles 
are produced as the number of atoms is fixed. However, since two 
neighboring fermions are considered as particles and antiparticles 
in the staggered formulation, pair production is encoded in the 
Fig. 2. Dynamics of the homogeneous electric field as represented by the bosonic 
species population imbalance of the atomic system for different values of � as in 
Fig. 1. The plasma oscillations arise from the backreaction of the produced pairs on 
the applied field.

Fig. 3. Momentum distribution of the produced fermions at tM = 25 (dotted), 
tM = 75 (dashed) and tM = 175 (solid) for � = 104 such that the QED result is well 
described.

hopping of atoms between odd and even sites of the optical lat-
tice. This generates correlations, whose time evolution describe the 
corresponding phenomenon of pair production as shown in Fig. 1. 
The results demonstrate the convergence of the atomic system’s 
dynamics to the QED behavior as the number of bosonic atoms is 
increased. For � = 2500 we still observe considerable deviations 
from the QED result, whereas the difference becomes small for 
� = 5000.

In Fig. 2 the time evolution of the cold atom analogue of 
the electric field, E = g(Nb − Nd)/2, is given for different val-
ues of �. As for Fig. 1, we start with a bosonic species imbalance 
Nb − Nd = 2M2/g2 > 0 corresponding to the critical electric field 
strength in QED, and the analogue of the Dirac vacuum or ‘Fermi 
sea’ with the lowest N/2 energy eigenstates occupied. By compar-
ison to Fig. 1, we observe a decrease of the electric field as the 
fermion number increases due to pair production. The correlated 
hopping of fermions reduces the bosonic species imbalance until it 
becomes zero and even changes its sign with Nb − Nd < 0 giving 
rise to plasma oscillations [18,21,29]. At times when the corre-
sponding electric field drops below a critical level, particle creation 
effectively terminates as reflected in the characteristic plateaus in 
the particle number density.

The plasma oscillations are caused by the production and sub-
sequent acceleration of particle–antiparticle pairs, which can be 
observed from their momentum distribution [18,21] as shown in 
Fig. 3 for � = 104 such that the QED result is well reproduced. The 
homogeneous electric field dominantly produces fermions around 
zero momentum, and accelerates the particles to higher momenta 
during the subsequent evolution. As the electric field decreases due 
to energy conservation, the production amplitude around zero mo-
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Fig. 4. Time evolution of the electric field for different total numbers of fermionic 
atoms, N = 32 (dotted), N = 128 (dashed) and N = 512 (solid) with � = 104.

mentum drops as well. At a time tM ∼ 175, the fermions reach 
their maximum momentum along with a vanishing net electric 
field. Subsequently, the fermionic current results in a further de-
crease of the electric field to negative values along with a decel-
eration of the produced particles leading to the observed plasma 
oscillations.

The limiting experimental resources enforce a study of the de-
pendence on the total number N of fermionic atoms. Fig. 4 shows 
the electric field for different N with fixed � = 104. We observe 
a reasonable description of the QED results for a full oscillation 
period employing a total number of fermionic atoms down to 
about N = 128, with sizable deviations occurring at later times. For 
N = 512 accurate descriptions are achieved for the entire range of 
times we considered.

5. Experimental realization

The physics of QED pair production in one spatial dimension 
may already be realized with available experimental techniques
[8,14,30,31]. Here we point out how the relevant regime of large 
� may be efficiently implemented and manipulated experimentally 
with the help of coherent many-body states.

Regarding the bosonic degrees of freedom, we confine two 
substates of one hyperfine manifold of bosonic atoms in a one-
dimensional geometry via an external potential. Further, we em-
ploy a red detuned laser to generate an optical lattice such that 
the atoms are localized and the nearest neighbor hopping is sup-
pressed. Already this construction allows us to realize mesoscopic 
bosonic gases with two components (bn and dn) per site which 
can be described by the one axis twisting Hamiltonian [32] cor-
responding to the first two terms of (2). The preparation of the 
bosonic atoms mimicking the electric field can be achieved by a 
magnetic field or homogeneous two-photon microwave coupling, 
which produces a coherent spin state between the two compo-
nents with a non-vanishing population difference.

Concerning the fermionic degrees of freedom, we again trap 
two substates of one hyperfine state manifold of fermionic atoms 
in a one-dimensional geometry. The aforementioned optical lattice 
is blue detuned for the fermions. Consequently, the fermions are 
located between the bosonic links, which is an essential ingredient 
of (2). In addition, we superimpose a second optical lattice with 
double lattice spacing in order to generate the staggered struc-
ture of the fermions. The frequency of this laser is tuned closer to 
resonance with respect to the fermions than to the bosons, such 
that the second lattice does not affect the latter ones. The stag-
gered structure leads to a mini-gap in the dispersion relation of the 
fermions such that the initial state of the fermions corresponds to 
a fully filled lowest mini-band [33]. The detection of the fermions 
can be achieved by exploiting the band mapping technique [34].
The overlap of neighboring bosonic and fermionic atoms makes 
the hopping of one fermion from one site to the next possi-
ble via spin changing collisions. This modifies the internal state 
of the boson, i.e., species b become d or vice versa. This inter-
action induced hopping process implemented by boson-fermion 
spin-exchange collisions locally preserves the total spin [35]. In 
particular, the detuning of this process that is experimentally con-
trolled by the external field corresponds to the mass term in (2). 
The dynamics of the system is initiated with a quench of the mass 
term from being far off-resonant.

6. Conclusion

Simulating high-energy physics by experiments with ultracold 
atoms may be achieved with coherent many-body states rather 
than single atoms. Our findings of the required resources in terms 
of atom numbers and protocols may already be realized with avail-
able experimental techniques. This opens new possibilities to re-
solve questions in the strong-coupling regimes of gauge theories, 
where no alternative real-time simulation techniques are known 
so far. Together with recent experimental proofs of concept in 
strongly interacting systems [36], one may hope to realize the old 
dream of solving complex problems in quantum field theory by 
experiment.
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