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Abstract
Wediscuss the experimental engineering ofmodel systems for the description of quantum
electrodynamics (QED) in one spatial dimension via amixture of bosonic 23Na and fermionic 6Li
atoms. The local gauge symmetry is realized in an optical superlattice, using heteronuclear boson–
fermion spin-changing interactions which preserve the total spin in every local collision.We consider
a large number of bosons residing in the coherent state of a Bose–Einstein condensate on each link
between the fermion lattice sites, such that the behavior of latticeQED in the continuum limit can be
recovered. The discussion about the range of possible experimental parameters builds, in particular,
upon experiences with related setups of fermions interactingwith coherent samples of bosonic atoms.
Wedetermine the atomic system’s parameters required for the description of fundamental QED
processes, such as Schwinger pair production and string breaking. This is achieved by benchmark
calculations of the atomic system and ofQED itself using functional integral techniques. Our results
demonstrate that the dynamics of one-dimensional QEDmay be realizedwith ultracold atoms using
state-of-the-art experimental resources. The experimental setup proposedmay provide a unique
access to longstanding open questions forwhich classical computationalmethods are no longer
applicable.

1. Introduction

The experimental engineering of atomicmodel systems for the description of dynamical gauge fields represents
amajor challengewithmost important applications. Fundamental gaugefieldsmediate the strong and
electroweak forces betweenmatter in the standardmodel of particle physics, where the photon of quantum
electrodynamics (QED) is amost prominent representative [1]. Gaugefields can also arise as emerging degrees of
freedom in strongly correlated condensedmatter systems such as related to the quantumHall effect [2] or
effective theories of spin liquids [3].Most pressing questions concern the real-time evolution of strongly
interacting gaugefields coupled to fermionicmatter, such as realized during the early stages of our universe and
explored in collisions of ultrarelativistic nuclei at giant laboratory facilities [4].

The complexmany-body dynamics of gaugefields is often very difficult to study in the original systems both
experimentally and theoretically. For instance, in a heavy-ion collisionmost experimental observables give
information only about the integrated space–time evolution of the system. Its theoretical description is
complicated by the fact that ab initio computer simulations of the real-time dynamics can only be achieved in
certain limiting cases because of the so-called sign-problem [5]. Here, the experimental engineering of atomic
quantum simulators appears as an attractive alternative, whichmay provide a unique access to longstanding
open questions [6–8].

Compact table-top experiments with ultracold atoms are rather easily accessible and provide a very flexible
testbed, with tunable interactions or reduced dimensionality by shaping the confining optical potential [9, 10].
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Since setups employing ultracold quantumgases can be largely isolated from the environment, they offer the
possibility to study fundamental aspects such as the unitary real-time evolution of systemswith engineered
Hamiltonians to high accuracy [11].

The realization of external static gauge fields has been achieved inmany impressive experiments with
ultracold atoms, such as in [12, 13]. In contrast, no experimental implementation of gaugefields as dynamical
degrees of freedom, as inQEDor quantum chromodynamics (QCD), in an atomic setup has been achieved yet,
although it has been theoretically discussed in [6–8]. The presence of dynamical gaugefields in the description of
a physical system reflects an underlying local symmetry, whose space–time dependent transformation
properties significantly constrains the quantumdynamics allowed. Implementing such a gauge symmetry for a
systemof bosonic and fermionic atoms can lead to involved constructions, which often rely on higher-order
processes that are challenging to control experimentally.

Further experimental progress can be facilitatedwith the identification and implementation of simple gauge
field theory examples. Abelian gauge symmetries, such as the localU(1) symmetry ofQED, clearly stand out in
this respect, in particular, if they are implemented in one spatial dimension. Abelian gauge theories in the
continuumare simpler than non-Abelian theories such asQCDbecause of the absence of self-interactions of the
gauge bosons. InQED the photon interacts only via processes involving electrons and positrons, while the
gluons inQCDdirectly interact with each other. In a lattice-discretized theory inmore than one spatial
dimension evenQEDmagnetic fields appear as ring exchange interactions whichmakes a possible experimental
implementation via effective interactions [14, 15], higher-order perturbative processes [16] or ancillary degrees
of freedom [17, 18] involved. In one spatial dimension, however, noQEDmagnetic field exists. This
dramatically simplifies possible descriptions of the interaction of the remaining electric fieldwith the fermions.
In this case, the interaction terms that respect the local gauge symmetry can be realized using heteronuclear
boson–fermion spin-changing interactions which preserve the total spin in every local collision [16, 19].While a
Jordan–Wigner transformation can be used to express the fermions as quantum spins, our construction does
not rely on thismapping but directly simulates the fermionic degrees of freedom. This is particularly important
in view of experimental implementations of gauge theories in dimensions larger than one, for which the Jordan–
Wignermapping is less useful. Despite the reduced complexity, the Abelian gauge theory setup in (1+ 1) space–
time dimensions still offers a rich phenomenology, including important dynamical strong-field phenomena
such as Schwinger pair production [19, 20] and string breaking [21], which are highly relevant formany systems
also inmore than one spatial dimension.

Very interesting and detailed suggestions have beenmade to realize gauge field dynamics in atomic systems,
wheremany proposals concentrate on quantum linkmodels [6]. In thesemodels the gaugefields are regularized
using quantum link variables which have afinite-dimensional linkHilbert space, andwhose dimension is
determined by the number of bosonic atoms residing on a given link between fermionic atoms in an optical
lattice. Since theHilbert space of a quantum linkmodel isfinite, themapping to atomic systems is in general
facilitated.Many ground-breaking investigations have been performed using a small number of bosons per link
[8, 15, 16, 21, 22]. A low-dimensionalHilbert space also allows one to achieve theoretical estimates based on
diagonalization or tensor network techniques [23, 24]. Since theHilbert space ofQEDorQCD itself is infinite-
dimensional, theHamiltonian formulation of the original gaugefield theory on a spatial lattice [25] can be
recovered for a sufficiently large number of bosons4.

In this workwe follow [19] and consider amixture of bosonic 23Na and fermionic 6Li atoms in a one-
dimensional optical superlattice.We concentrate on the regimewith a large number of bosons residing on each
link, such that the results of the original lattice gauge theory in the continuum limit are recovered. Our
discussion about the range of possible atomic system’s parameters builds, in particular, upon experiences with
related experimental setups of fermions interacting with coherent samples of bosonic atoms [26–31]. The other
important ingredient of our investigation concerns benchmark calculations of the atomic system and of the
original gauge theory. Since exact diagonalization techniques are no longer applicable in this case, we employ
powerful functional integral (FI) techniques [19, 32–35]. They allow us to do ab initio calculations in an
important range of strong-field phenomena. Reproducing these benchmark results with future experimental
realizationswill be a crucialmilestone, before new regimes can be explored that are no longer accessible with
classical computationalmethods.

This publication is organized as follows. In section 2we briefly reviewQED in (1+1) space–time dimensions,
i.e.themassive Schwingermodel.We employ a lattice discretizationwith staggered fermions to connect the
gauge theory to an atomicmodel in an optical superlattice with angularmomentum conserving scattering

4
Themapping becomesmore involved if only a small number of bosons per link is employed. In this case, the quantum fields of the original

gauge theory can arise as low-energy effective degrees of freedomof the theory of quantum links after dimensional reduction.More precisely,
the quantum fields of a gauge theory inDdimensions are obtained from a (D+ 1)-dimensional theory of quantum links. To recover one-
dimensionalQEDorQCDwould, therefore, require a two-dimensional quantum link setupwhere the extra dimension could also be
implementedwith the help of internal degrees of freedom [6].
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processes. In section 3we discuss in detail a possible experimental implementation of the Schwingermodel in a
mixture of bosonic and fermionic atoms, where gauge invariance requires a correlated hopping of the staggered
fermionswith the Schwinger bosons residing on the links.While the basic discussion follows to a large extent
[16], we concentrate on the implementation in specific systemswith given experimental parameters to ensure
the relevant separation of scales that is required to suppress contributions fromgauge symmetry violating states.
Moreover, we employ species-dependent lattices to separate the bosonic and fermionic degrees of freedom in
order to simplify the experimental realization. In that sectionwe also translate the basic quantities of the cold
atom system to the fundamental parameters of the corresponding lattice gauge theory. A set of viable parameters
to be employed in an upcoming experiment is presented in section 4. The later sections are devoted to
benchmark calculations in order to demonstrate that relevantQEDprocesses can indeed be described using the
available experimental parameters of the atomic setup. In section 5we review the FI approach and derive
equations ofmotion for the cold atom system. Thismethod allows us to accurately describe the nonequilibrium
dynamics of coherent bosonicfields coupled to fermions from first principles. In section 6we study the real-time
dynamics of Schwinger pair production and string breaking in the cold atom system. This section is an extension
of the pair-production results of [19] to the new parameter sets established in this work, and to the phenomenon
of string breaking that has not been considered in the large boson number regime of the atomic setup before.We
present the dynamics of various experimentally accessible observables and discuss the accuracywithwhichQED
can be represented in practice by afinite atomic system.We conclude and give an outlook in section 7.

2. The Schwingermodel revisited

Quantumelectrodynamics formassless fermions in one spatial dimension (Schwingermodel) is an exactly
solvablefield theory [36]. On the other hand, no analytic solution is known formassive fermions (massive
Schwingermodel) [37]. From a phenomenological point of view, a particular interest in thismodel stems from
the fact that it shares several characteristic aspects with the theory of strong interactions (QCD) such as
spontaneous chiral symmetry breaking or dynamical string breaking(see e.g. [38–41]).

Nonperturbative studies of themassive Schwingermodel are typically based on a lattice discretization of the
continuum theory. The construction of a hermitean, local and translation-invariant lattice theory of fermions
necessarily entails the appearence of unphysical degrees of freedom, the so-called fermion doublers [42]. One
possibility to resolve this problem is bymaking the spurious doublermodes heavy via aWilson term [43] andwe
refer to [32, 33, 44] for numerical studies using this approach. In this work, we employ the alternative staggered
fermion discretizationwhere theDirac spinor is decomposed in such away that the doublermodes can be
disregarded as they decouple. As a consequence, the particle and antiparticle components reside on neighboring
lattice sites [25]. TheHamiltonian of the theory is given by

( ) ( ) ( )† †å å åy y y y= + - - -+H
a

E M
a

U
2

1
i

2
h.c. , 1S

n
n

n

n
n n

S n
n n nKS

2
1

as indicated infigure 1.Here, aS denotes the lattice spacing andM the fermionmass [25, 36] andwe choose to
work in natural units ( = =c 1). The staggered fermion field operator yn, which resides on lattice sites n,
fulfills the canonical anti-commutation relation { }†y y d=,n m nm. The fermionic charge operator is defined as

( ) ( )† y y= +
- -1 1

2
. 2n n n

n

Accordingly, the presence of a fermion at an even site is interpreted as particle ( = +1n )whereas the absence of
a fermion at an odd site is interpreted as antiparticle ( = -1n ). The unitary link operatorUn and the electric
field operatorEn act between neighboring lattice sites n and +n 1and obey the commutation relations

[ ] ( )† =U U a, 0, 3n m

Figure 1. Schematic representation of theHamiltonian (1): the fermionicmodes yn on each lattice site (orange circles) interact with
U(1) variables at each link ( )E U,n n , that connect neighboring lattice sites (green clouds).
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[ ] ( )d=E U g U b, , 3n m nm m

where g denotes the gauge coupling. This algebra entails an infinite-dimensional localHilbert space. For theU(1)
gauge theory, theGauss’s law operator

( )= - --G E E g 4n n n n1

generates local gauge transformations and commutes with theHamiltonian [ ] =H G, 0nKS .
Quantum linkmodels have been proposed as an alternative formulation of gauge theories for which finite-

dimensional representations of the link algebra exist [45–47]. Recently, the prospect of constructing quantum
simulators for gauge theories has boosted the interest in thesemodels as their implementation in atomic systems
could be greatly facilitated. In this approach, the electric field operator is identifiedwith the z-component of the
quantum spin operator Lz n, ,

( )E gL , 5n z n,

whereas the link operators are regarded as raising and lowering operators

ℓ ℓ[ ( )] ( ) + -
+U L a1 , 6n n

1 2
,

ℓ ℓ[ ( )] ( )†  + -
-U L b1 , 6n n

1 2
,

with = L L Lin x n y n, , , . The quantum spin operators fulfill the angularmomentum algebra
[ ] d=L L L, ii n j m nm ijk k n, , , andℓ denotes the spinmagnitude. Consequently, the commutation relation (3b) is
identically fulfilled, whereas the commutation relation (3a) is no longer valid ifℓ is kept finite, but replaced by

ℓ ℓ[ ] [ ( )]† d= +U U E g, 2 1n m nm m which goes to zero only as ℓ  ¥. Only in this limit the unitarity of the link
operatorUn is restored again.However, it is central for thewhole construction that afiniteℓ does not affect
gauge invariance as generated by theGauss’s law operator

( ) - --G L L 7n z n z n n, , 1

with theHamiltonian of the quantum link Schwingermodel

ℓ ℓ
( )

( )
( ) ( )† †å å åy y y y= + - -

+
-+ +H

g a
L M

a
L

2
1

i

2 1
h.c. . 8S

n
z n

n

n
n n

S n
n n nQL

2

,
2

, 1

Thefinite-dimensional representation of the angularmomentum algebramakes its implementation in systems
of ultracold atoms feasible. For representations with smallℓ, numericalmethods based on diagonalization or
tensor network states provide valuable information about static and dynamic properties [23, 24, 48–50]. Of
course, it is an important question to understand the connection between the finite-dimensional representation
of cold atom gauge theories and the infinite-dimensional representation corresponding toQED. In [19] the
large-ℓ regime and the convergence to ℓ  ¥ results, i.e.QED itself, has been established using powerful FI
techniques for strong-field phenomena. In section 5we describe the FI approach and apply it to obtain
benchmark results for theHamiltonian (8) using parameter setsmotivated by possible experimental
realizations.

3. Experimental realization

Our starting point for the realization of theU(1) gauge theory coupled to fermionicmatter in an ultracold atom
experiment is a genuine interacting gas of fermionic and bosonic atoms [7]. To facilitate the connectionwith the
experiments we reintroduce ÿwhere appropriate. The bosons ( )fa x and fermions ( )ya x fulfill the canonical
commutation and anti-commutation relations, respectively,

[ ( ) ( )] { ( ) ( )} ( ) ( )† †f f y y d d= = -a b a b abx x x x x x, , . 91 2 1 2 1 2

Here, the greek labels a b, denotemagnetic hyperfine states of the atoms. The particles are confined by external
potentials and interact via inter- and intra-species scattering processes. The correspondingHamiltonian consists
of three parts, = + +H H H HT V I . The kinetic part,HT, describes themovement of the atoms,

∣ ( )∣ ∣ ( )∣ ( ) 
ò òå åf y=  + 

a
a

a
aH

M M
x x x x

2
d

2
d 10T

b f

2
3 2

2
3 2

withmassesMb andMf. The potential energy contribution,HV, is determined by the external potentials
according to

( ) ( ) ( ) ( ) ( ) ( ) ( )† †ò òå åf f y y= +
a

a a a
a

a a aH V Vx x x x x x x xd d , 11V
b f3 3
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whereas the atomic scattering processes are described by

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

† †

† †

† †

ò

ò

ò

å

å

å

f f f f

y y y y

y f f y

=

+

+

abgd
abgd a b d g

abgd
abgd a b d g

abgd
abgd a b d g

H g

g

g

x x x x x

x x x x x

x x x x x

1

2
d

1

2
d

1

2
d . 12

I
b

f

bf

3

3

3

The coupling constants are determined by the scattering lengths of the inter- and intra-species scattering
processes. Throughout this work, we indicate purely bosonic terms by the superscript b, fermionic terms by the
superscript f and boson–fermion interactions by the superscript bf.

In the following, we describe in detail all the steps that are required so that the gas of fermionic and bosonic
atoms in three spatial dimensions (10)–(12) behaves according to theHamiltonian (8) in one spatial dimension.
To this end, we showhow to reduce the dimensionality from three to one dimensions and how to construct the
staggered lattice for fermions. Afterwards, we describe how to select only those interactions from (12) that
correspond to the gauge invariant interactions in (8).

3.1.One-dimensional staggered geometry
The basic ingredient for realizing a one-dimensional lattice structure with lattice constant a is an optical lattice
with tight radial confinement. Employing a laser frequencywhich is blue detuned for fermions and red detuned
for bosons allows us to place amesoscopic bosonic gas on the links between the fermionic lattice sites, as
indicated in the left graph of figure 2. In fact, the potential energy contributions (11) can be split into an axial and
radial part,

( ) ( ) ( )( )
= +a a a^

- + aV V x Vx e . 13s s s y z l
, ,

s
2 2

,
2

Here, als, denotes the radial confinement length scale, wherewe distinguish bosons and fermions by the
superscript { }Îs b f, . Owing to tight radial confinement, the three-dimensional system is effectively rendered
one-dimensional andwe employ the product form

( ) ( ) ( ) ( ) ( )f j j f=a ay z x ax , 14b b

( ) ( ) ( ) ( ) ( )y j j y=a ay z x bx , 14f f

where ( )j ys and ( )j zs are the ground statewave functions in the y and zdirections, respectively.We assume that
these states are independent of themagnetic quantumnumber.

To generate a staggered structure for the fermions, the original optical lattice with period a is superimposed
by an optical superlattice with period a2 , as indicated in the right graph offigure 2.Owing to the fact that the
frequency of the second laser is tuned closer to resonancewith respect to the fermions than to the bosons, the
second lattice does practically not affect the bosonic degrees of freedom.Disregarding the effect of overall
confinement in the axial direction, the axial part of the potential is then given by

( ) ( )
p

=a a ⎜ ⎟⎛
⎝

⎞
⎠V x V

x

a
acos

2
, 15b b

, 1,
2

( ) ( )
p p

= +a a a⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠V x V

x

a
V

x

a
bsin

2
cos . 15f f f

, 1,
2

2,
2

Figure 2.Realization of the staggered lattice structure. The black arrows indicate the dipole lasers which are used in the experimental
setup. (1)Blue/red detuning for fermions/bosons generates phase-shifted optical potentials for bosons and fermionswith a lattice
period a. (2)The superposition of the latticewith period a by a superlattice of period a2 generates the staggered structure for the
fermions.
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The amplitudes aVi
s
, , i=1, 2 are determined by the AC Stark shift of the correspondingmagnetic substatesα.

The tunneling of bosons between adjacent sites is suppressed by tuning of the laser amplitude. As already noted
in [16], such a construction is spin-independent and, hence, distinct from e.g.[21].

In the following, it is useful to switch to a representation in terms of localizedWannier functions. To this
end, wefirst consider the fermionic degrees of freedom and focus on the two lowest energy bands. By tuning of
the laser amplitude, wemay choose aVi

f
, such that twoWannier functions ( )a ¢w xn p

f
, are obtainedwhich are

sufficiently localized in the left (p= L) and right (p=R)minimumof the elementary cell { }¢ Î ¼ -n N0, , 1
with positive integerN of the optical lattice, respectively. The corresponding expansion of the fermionic field
operator reads

( ) ( ) ( )åy y=a a a
¢

¢ ¢x w x . 16
n p

n p
f

n p
,

, ,

Wenote that the total number of bosonic/fermionic lattice sites is N2 andwewill label themby
{ }Î ¼ -n N0, , 2 1 . Similarly, wemay expand the bosonic field operators, ( ) ( )f f= åa a a¢ ¢ ¢x w xn p n p

b
n p, , , ,

where theWannier functions ( )a ¢w xn p
b
, are again localized in the twominima of the elementary cell. In fact, the

structure of the superlattice suggests the definition

( )y y y yº ºa a a a¢ ¢ ¢+ ¢ a, , 17n n L n n R2 , , 2 1, ,

( )f f f fº ºa a a a¢ ¢ ¢+ ¢ b, . 17n n L n n R2 , , 2 1, ,

Wenote that the kinetic energy contributions (10) are suppressed since theWannier functions that correspond
to the differentminima in the optical lattice do not have a sizable overlap (see also section 4).

3.2. Angularmomentumconservation
In the previous section, we reviewed how the potential energy (11) can be used to generate the staggered lattice
structure.Moreover, it was noted that the kinetic energy (10) is suppressed due to the localization of theWannier
functions at the potentialminima. To ensure local gauge invariance and create dynamics in the cold atom
system,we have to tune the interactionHamiltonian (12) such that only a selection of terms contributes. In the
following, we discuss all interaction terms inmore detail and explain the connection between the various
scattering lengths and coupling constants abgdg s for { }Îs b f bf, , . For pedagogical reasons, we discuss the

construction in free spacefirst and take into account the lattice later.
We suppose that the inter- and intra-species interactions of bosons and fermions are local and conserve

angularmomentum. Specifically, we consider bosonic degrees of freedomwith spin fb= 1 and fermionic degrees
of freedomwith spin =f 1 2f . Therefore, the two-particle potentials are given by

( ) ( ) ( )


 åd= -V gx x x x P, , 18s
s1 2 1 2 ,

s

s s

where the total spin can take the values { } Î 0, 2b , { } Î 0, 1f and { } Î 1 2, 3 2bf [51]. The interaction
strengths gs, s

are related to the s-wave scattering lengths as, s
via

( )



p

=g
a

M

2
. 19s

s

r s
,

2
,

,
s

s

Here Mr s, denotes the reducedmass of the two scattering partners. In general, the projector P for two particles
with individual spins f1 and f2 on the subspacewith total spin  can bewritten as

∣ ∣ ( )  å= ñáf f M f f MP , ; , , ; , , 20
M

1 2 1 2

where { }   Î - - + ¼ -M , 1, , 1, are the possiblemagnetic quantumnumbers.Wemay relate the
interaction strengths gs, s

to the constants appearing in the interaction part of theHamiltonian (12) according to

∣ ∣ ( ) 


åå a b g d= á ñá ñabgdg g f f f f M f f M f f; ; ; , ; , , ; , ; ; ; . 21s

M
s s s, 1 2 1 2 1 2 1 2

s

s

Here, ∣ a bá ñf f f f M; ; ; , ; ,s1 2 1 2 are theClebsch–Gordan coefficients for coupling the individual spins f1 and f2
to the total spin s. Specifically, we have = =f f 11 2 for boson–boson interactions (s= b), = =f f 1 21 2 for
fermion–fermion interaction (s= f ) and =f 1 21 , =f 12 for boson–fermion interaction (s= bf ).

Following along the lines of the previous section, we reduce the three-dimensional system to a setupwith
effectively one spatial dimension and expand the field operators in terms ofWannier functions. Using a compact
notation, where ( )= n n n nn , , ,1 2 3 4 denotes the site indices and ( )m a b g d= , , , themagnetic quantum
numbers, we canwrite for the interaction part of theHamiltonian:
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( )

† † † † † †å å åf f f f y y y y y f f y= + +
m

m
m

m
m

ma b d g a b d g a b d gH U g U g U g
1

2

1

2

1

2
.

22

I
b b

n n n n
f f

n n n n
bf bf

n n n n
n

n
n

n
n

n
,

, , , ,
,

, , , ,
,

, , , ,
1 2 4 3 1 2 4 3 1 2 4 3

The coupling constantsU s
n are determined by the dimensional reduction and the explicit formof the overlap

integrals of theWannier functions, as given in appendix A.
Based on this interactionHamiltonian, we see that a plethora of possible interaction terms are generated in

general. In order to realize theHamiltonian (8), however, we have to guarantee that only specific terms
contribute that respect the gauge symmetry. To this end, we use the fact that the application of an appropriate
magnetic field and radio-frequency (rf) dressing allows for a selection of a small number of relevant interaction
terms, whereas all other contributions become suppressed.We emphasize that this selection is achieved by the
unequal shift of the bosonic and fermionic energy levels, as depicted infigure 3.Most notably, this procedure
results in the bosonic spin exchangewith the simultaneous fermion hopping that corresponds to the gauge
invariant interaction term in (8).We note that this selection process does not exclude elastic scattering terms, i.e.
scattering processes without changing the individual spins of the atoms.

All bosonic states are prepared in { }a = -1, 0b states whereas the fermionic degrees of freedom are
generated in the staggered configurationwith a = 1 2f on even sites and a = -1 2f on odd sites. As a
consequence, interactions including the a = 1b sector, which are allowed in principle, are suppressed at all
times if initialized accordingly.We further elaborate on this issue in the following sections.

3.3. Bosonic intra-species interactions
In this section, we discuss the intra-species interaction terms of bosons inmore detail. Owing to localization in
the optical lattice, only on-site interactions of bosons contribute, i.e. ¹U 0b

n for ( )= n n n nn , , , and all others
effectively vanish. Accordingly, the relevant part of the purely bosonic term in the interactionHamiltonian (22)
is given by

( )† †å f f f f=
m

m a b d gH U g
1

2
, 23I

b

n

b b
n n n nn

,
, , , ,

where all entries of ( )m a b g d= , , , may take values { }a Î -1, 0b . Again, we note that we disregard terms
including themagnetic substates a = 1b which are excluded by the spin conservation if initialized accordingly.
The interaction term (23) reads

( )† † † † † †å f f f f f f f f f f f f= +
+

+- - - - - -

⎛
⎝⎜

⎞
⎠⎟H U g

g g
g

1

2

2

3
2 , 24I

b

n

b
b n n n n

b b
n n n n b n n n nn ,2 , 1 , 1 , 1 , 1

,0 ,2
,0 ,0 ,0 ,0 ,2 ,0 , 1 , 1 ,0

where the coupling constants result from (21) andwe assumed that the overlap integralsU b
n are the same for all

terms. For later convenience, we denote the bosonic degrees of freedomon even sites as f º- dn n2 , 1 2 and
f º bn n2 ,0 2 , whereas we interchange their role on odd sites such that f º+ - +bn n2 1, 1 2 1 and f º+ +dn n2 1,0 2 1. In
fact, the bosons bn and dn can be understood as Schwinger bosons [52]with the identification

( )† †= =+ -L b d L d b a, , 25n n n n n n, ,

Figure 3.The application of aB-field and rf-dressing splits the superlattice for the individualmagnetic substates of the bosons and
fermions.

7

New J. Phys. 19 (2017) 023030 VKasper et al



( ) ( )† †= -L b b d d b
1

2
, 25z n n n n n,

which constitute a representation of the angularmomentum algebra [ ] d=L L L, ii n j m nm ijk k n, , , with

= L L Lin x n y n, , , . The constraint ℓ † †= +b b d d2 n n n n is fulfilled because the hopping of bosons between
neighboring sites  n n 1 is suppressed. The bosonic intra-species interactionHamiltonian is then given by

( ) ( )å å=
-

+ D -H
g g

U L L
6

1 , 26I
b b b b

n
z n b

n

n
z nn

,0 ,2
,

2
,0 ,

wherewedisregarded an irrelevant constant and introduced the abbreviation ℓ( )( )D º - -g g U2 1 6b b b
b
n,0 ,0 ,2 .

3.4. Fermionic intra-species interaction term
In this section, we discuss the intra-species interaction terms of fermions inmore detail. Again, only on-site
interaction terms contribute owing to localization such that ¹U 0f

n only for ( )= n n n nn , , , . Taking into
account theClebsch–Gordon coefficients, the purely fermionic term in the interactionHamiltonian (22) can be
reduced according to

( )† †å y y y y= - -H U g . 27I
f

n

f
f n n n nn ,0 ,1 2 , 1 2 , 1 2 ,1 2

In general, this four-fermion interaction term influences the dynamics. However, the contribution can be
written as a density–density interaction

( )å r r= -H U g 28I
f

n

f
f n nn ,0 ,1 2 , 1 2

between a = -1 2f and a = 1 2f particles with density operators †r y y=  n n n, 1 2 , 1 2 , 1 2. Restricting
ourselves to an initial state ∣Yñwith only a = 1 2f particles on even sites and only a = -1 2f particles on odd

sites, one immediatelyfinds that ∣Yñ =H 0I
f . Consequently, this four-fermion interaction does not contribute

to the time evolution due to an appropriate initial-state preparation.

3.5. Inter-species interaction term
Regarding the fermion–boson scattering contributions to theHamiltonian (22), we have to consider both the
spin exchange process as well as elastic scattering processes. According to the interaction selection process
described above, the spin exchange term that involves the correlated hopping of fermions and bosons is given by

( ) ( )† † † †å y f f y y f f y= + +m a b d g a b d g
¢

+ - - -H U g
1

2
h.c. , 29I

bf

n

bf bf
n n n n n n n nn 2 , 2 , 2 , 2 1, 2 , 2 1, 2 1, 2 1,se

with ( ) ( )m a b g d= = - -, , , 1 2, 0, 1 2, 1 . Thefirst term corresponds tofigure 4(a)whereas the second
term is shown infigure 4(b). According to (21), the coupling constant for this specific scattering process is given
by

( ) ( )= -mg g g
2

3
. 30bf

bf bf,3 2 ,1 2

Weemphasize that the spin exchange termdoes not change the staggered occupation of fermions such that the
four-fermion term (27) still does not contribute.We anticipate that this applies to the elastic scattering terms as

Figure 4.The selection procedure results in the correlated bosonic spin exchangewith a fermionic hopping in the superlattice. Note
that the inverse process is allowed aswell.
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well. Accordingly, the fermions are completely determined by their parity (even/odd sites) andwemay therefore
drop the spin label completely, such that

( )y y y yº º- + +, . 31n n n n2 2 , 1 2 2 1 2 1,1 2

Employing the Schwinger boson representation and taking into account that the overlap integralU bf
n does not

depend on the specific lattice site n, the spin exchangeHamiltonian can bewritten as

( ) ( )†å y y= +m + +H U g L
1

2
h.c. . 32I

bf bf bf

n
n n nn , 1se

The elastic scattering processes, on the other hand, are given by

( )

† †

† †

† †

† †

å

å

å

å

y f f y

y f f y

y f f y

y f f y

=

+

+

+

m

m

m

m

b
b b

b
b b

b
b b

b
b b

¢

¢
- -

¢
+ +

¢
+ + + +

H U g

U g

U g

U g

1

2

1

2

1

2

1

2
, 33

I
bf

n

bf bf
n n n n

n

bf bf
n n n n

n

bf bf
n n n n

n

bf bf
n n n n

n

n

n

n

,
2 2 , 2 , 2

,
2 2 1, 2 1, 2

,
2 1 2 , 2 , 2 1

,
2 1 2 1, 2 1, 2 1

el

where { }b Î -1, 0 .We note that the coupling constants mg
bf still depend on themagnetic substates and are

therefore not identical for the different terms.Moreover, wefind that eachU bf
n is independent of n in (33), and

identical in thefirst and second line (further denoted byU bf
n1) as well as in the third and fourth line (further

denoted byU bf
n3), see appendix A. For the first term in (33)with ( )m b b= - -1 2, , 1 2, , we obtain

( )† † † †å åy y y y=
+

+
¢ ¢

H
g g

U b b
g

U d d
2

6 2
, 34I

bf bf bf

n

bf
n n n n

bf

n

bf
n n n nn n

,1 2 ,3 2
1 2 2 2 2

,3 2
1 2 2 2 2el,1

wherewe used (21) again. The second term in (33) is the same as the first one upon replacing  -b dn n2 2 1 and
 -d bn n2 2 1. The third term in (33), however, is different owing to ( )m b b= 1 2, , 1 2, corresponding to the

different fermionic parity and reads

( )† † † †å åy y y y=
+

+
+

¢
+ +

¢
+ +H

g g
U b b

g g
U d d

2

6

2

6
. 35I

bf bf bf

n

bf
n n n n

bf bf

n

bf
n n n nn n

,1 2 ,3 2
3 2 1 2 2 2 1

,1 2 ,3 2
3 2 1 2 2 2 1el,3

The fourth term in (33) is the same as the third one upon replacing  +b dn n2 2 1 and  +d bn n2 2 1. Employing
the Schwinger boson representation ℓ† = +b b Ln n z n, and ℓ† = -d d Ln n z n, , thefirst term (34) can bewritten as

ℓ ( )† †å åy y y y=
-

+
+

¢ ¢

H
g g

U L
g g

U
6

5

6
. 36I

bf bf bf

n

bf
n n z n

bf bf

n

bf
n nn n

,1 2 ,3 2
1 2 2 ,2

,1 2 ,3 2
1 2 2el,1

Similarly, the third term (35) is given by

ℓ ( )† †å åy y y y=
-

+
+

¢
+ +

¢
+ +H

g g
U L

g g
U

6 2
, 37I

bf bf bf

n

bf
n n z n

bf bf

n

bf
n nn n

,3 2 ,1 2
3 2 1 2 1 ,2

,1 2 ,3 2
3 2 1 2 1el,3

and similar expressions are also obtained for the second and fourth termby replacing  -L Lz n z n,2 ,2 1.
Accordingly, we obtain a contribution

˜ ( ) ˜ ( ) ( )† †å åy y y y= - + -
¢

+ + +
¢

-H g U L L g U L L 38I L
bf

bf
n

bf
n n z n z n bf

n

bf
n n z n z nn n, 3 2 1 2 1 ,2 1 ,2 1 2 2 ,2 ,2 1el z

with ˜ ( )= -g g g 6bf bf bf,1 2 ,3 2 that does not appear in the targetHamiltonian (8). Thedifference of the Lz
operators can be expressed in termsof theGauss’s lawoperator, [( ) ]†y y- = + + - --L L G 1 1 2z n z n n n n

n
, , 1 .

Any termproportional toGn exactly vanishes upon acting onphysical states so thatwe can disregard them. In
summary, the elastic scattering terms result inbilinear, parity-dependent fermionic contributions that account to
thepotential energy of the fermions:

ℓ ℓ[( ) ˜ ] ˜ ( )† †å åy y y y= + + +
+

+
¢

+ +
¢

⎛
⎝⎜

⎞
⎠⎟H U g g g U

g g
g

5

3
. 39I

bf bf
bf bf bf

n
n n

bf bf bf
bf

n
n nn n3 ,1 2 ,3 2 2 1 2 1 1

,1 2 ,3 2
2 2el

3.6. Cold atomQEDHamiltonian
Summing up all contributions that originate from the kinetic, potential and interaction terms, the cold atom
QEDHamiltonian takes the form
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( ) ( )

( ) ( )

†

† † †

å å å

å

y y

y y

=
-

+ D - + +

+ + +

m + +H
g g

U L L U g L

V V b b V d d

6
1

1

2
h.c.

. 40

b b b

n
z n b

n

n
z n

bf bf

n
n n n

n
n
f

n n n
b

n n n
d

n n

n n
,0 ,2

,
2

,0 , , 1

The terms in the last line include the potential energy contributions, in particular the energy due to the trapping
of the atoms as well as the bilinear term (39). Again, we emphasize that the fermionic contributionVf

n depends
on the parity of n. Introducing the energy differenceDf according to = - DV V 2n

f f
f2 0 / and

= + D+V V 2n
f f

f2 1 0 / , the fermionic potential contribution is given by

( ) ( )† †å åy y y y= -
D

-H V
2

1 . 41V
f f

n
n n

f

n

n
n n0

Owing to total particle number conservation, the first termdoes not contribute to the dynamics and can thus be
disregarded. The bosonic potential term is treated in a similar fashion. In fact, definingDb,1 according to

( )= + - DV V 1 2n
b b n

b0 ,1 and ( )= - - DV V 1 2n
d b n

b0 ,1 and using ( )† †= -L b b d d 2z n n n n n, , we obtain

( ) ( )å= D -H L1 , 42V
b

b
n

n
z n,1 ,

wherewe disregarded an irrelevant constant proportional toVb
0 which only depends onℓ. Adding the second

contribution in (40) and definingD º D + Db b b,0 ,1, we obtain

( ) ( ) ( )å å+ D - = D -H L L1 1 . 43V
b

b
n

n
z n b

n

n
z n,0 , ,

Comparison of the cold atomQEDHamiltonianwith the targetHamiltonian (8) then shows that we have a term
linear in Lz n, . However, this termdoes not contribute. To see this, we transform theHamiltonian into the
interaction picture. To this end, we split the cold atomQEDHamiltonian into two parts, = +H H H0 1, with

( ) ( )†å y y= D - -⎜ ⎟⎛
⎝

⎞
⎠H L a1

1

2
, 44b

n

n
z n n n0 ,

( ) ( ) ( )† †å å åc y y
c

y y= + D - + ++ +H L L b1
2

h.c. . 44BB
n

z n
n

n
n n

BF

n
n n n1 ,

2
, 1

Here, we introduced the detuning D º D - D2 b f , the effective boson self-interaction cBB and the boson–
fermion interaction cBF ,

( )c =
-g g

U a
6

, 45BB
b b b

n
,0 ,2

( )
( )c =

-g g
U b

2

3
. 45BF

bf bf bf
n

,3 2 ,1 2

The indexn is the same as in (23) and (29) and the overlapsUn are determined in (A11) of the appendix. Upon
actingwith the unitary transformation ( ) ( )= -U t H texp i 0 , it is straightforward to show that

( ) ( )†¢ =H U t H U t1 1 . Performing the canonical transformation ( )y y -in
n

n, we can finally identify ¢H1 with
the quantum linkHamiltonian (8)

ℓ ℓ
( )

( )
( ) ( )† †å å åy y y y= + - -

+
-+ +H

g a
L M

a
L

2
1

i

2 1
h.c. 46S

n
z n

n

n
n n

S n
n n nQL

2

,
2

, 1

wherewe introduced the abbreviations

( )
c
D

º
g a

M
a

2
, 47BB S

2

ℓ ℓ( )
( )

c
D

º
+a M

b
1

1
, 47BF

S

and time ismeasured in units ofM instead ofΔ.We note that we have to take the limit ℓ  ¥ in order to
recover theHamiltonian formulation of latticeQED corresponding to (1).

4.Microscopic parameters

At this point, we are now able to determine the accessible parameters for an experimental implementation of the
Schwingermodel via amixture of bosonic Na23 and fermionic Li6 atoms [30], which is determined by the
parameters cBB, cBF ,Δ and the occupation numbers of the links.
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Thewave functions that appear in the overlap integrals for cBF and cBB are determined by the lattice spacing
a, the lattice depthsVb,V f

1 andV
f
2 appearing in (15), the difference of scattering lengths that drives the spin-

changing collisions aswell as the atomic density on each site. ForNa+Na in the fb= 1manifold, one obtains
- =a a a5b b,0 ,2 0 [53], where a0 is the Bohr radius. For theNa+ Li collisions, we have - =a a a0.9bf bf,3 2 ,1 2 0

[54]. Further, we choose m=a 4 m, =V E20b
R1 , =V E2.76f

R1 and = -V E1.85f
R2 with the recoil energy

( )= pER M a2

2 2

b

2

. Here the number of lattice sites can range froma few sites up to N 100, where the limit arises

typically due to different experimental constraints. A judicious choice of the orthogonal confinement allows us
to use the samewave function for bosons and fermions in the orthogonal direction ( ) ( )j j=y zs s with
w p =^ 2 5 kHz. This potential results in c =h 0.05 HzBF , c =h 0.58 HzBB .We choose the occupation of
the bosonic links to be »N 100B atoms perwell, such that the estimated time scale for three-body loss is of the
order of several seconds. Thismeans that the Bose–Fermi couplingwill be typically of the order of
c »N h 5 HzBF B . It will lead to a hopping of fermions between neighboring lattice sites if the detuning is not
too large andwe therefore choose a detuning ofD »h 10 Hz. Further, the chosen experimental parameters
ensure that the bosonic and fermionic tunneling »J h 0.25 HzB , »J h 0.25 HzF (see appendix (A12)) is ten
times slower than the expected gaugefield dynamics. Sowe can indeed neglect the direct tunneling for a
description of the cold atom system as done in the previous derivation.

Given themicroscopic parameters of themodel, we have inmind applications to strong-field phenomena
such as Schwinger pair production or string breaking, for whichwe aim to performbenchmark simulations of
the cold atomHamiltonian (40). To study Schwinger pair production, the electricfieldE is supposed to exceed
the criticalfield strength =E M gc

2 such that the amplitude E E 1c . In the atomic system, this is given by

ℓ ℓ( ) ( )
( )

c c
=

+ -
D

g L

M

N N1
48z b d BF BB

2

2 2

with †= á ñN b bb n n and †= á ñN d dd n n . Further, we approximate ℓ ℓ( )+ » N1 2B and - »N N Nb d B. The
achievable electric field exceeds the criticalfield strengthwith »E E 1.5c for the given experimental
parameters.

This puts the exciting prospect of studying Schwinger pair production using ultracold atomswithin reach of
current experimental techniques. For a successful quantum simulation of Schwinger pair production, however,
it does not suffice to implement only the appropriateHamiltonian. Additionally, we also need to verify (i) that a
proper initial state can be prepared, (ii) that theQEDdynamics is indeed accessible to the experimental protocol,
and (iii) that we can read out the relevant quantities experimentally. In fact, all these requirement can be fulfilled
with current experimental techniques for a range of important strong-field phenomena, as further described in
section 6.2.

5. Functional integral (FI) approach

In this sectionwe outline the FImethod to investigate the real-time dynamics of fermions coupled to bosonic
fields and for convenience we perform the following theoretical calculations in natural units. Since identical
fermions cannot occupy the same state, their quantumnature is highly relevant and a consistent quantum theory
of nonequilibrium Schwinger pair production including backreactions is envisaged. Based on the defining FI of
the quantum theory, a systematic expansion can be achievedwhere the corrections are given in terms of a small
(dimensionless coupling) parameter for strong-field phenomena as reviewed in [34]. At lowest order in this
expansion one recovers a classical-statistical field theory for bosonic fields or the so-called TruncatedWigner
approximation. The inclusion of fermions requires to go beyond lowest order, whichwe describe below and
apply to the cold atomHamiltonian (46) in section 6. To study the strong-field regime ofQED, thefield strength
needs to be of the order of the criticalfield =E M gc

2 . The corresponding cold atom setup is characterized by
∣ ∣= - ~E g N N M g2c b d

2 , where N N,b d denote the number of atoms in the Bose–Einstein condensates. For
ℓ( ) ~N N, 1b d , the FI approach of [32, 34, 44, 55, 56] allows us to study the dynamics in this regime.

Tomake contact with the TruncatedWigner approach, we start from a purely bosonic theory [57]. The
expectation value of an observableO is given by the trace

( ) { ( )} ( )rá ñ ºO t O tTr , 49

where the time-dependent density operator ( )r t in the Schrödinger picture obeys the von-Neumann equation

( ) [ ( )] ( )r r¶ =t H ti , . 50t

Its discretized version

( ) ( ) [ ( ) ( ) ] ( )r r r r+ D = - D -t t t t H t t Hi 51
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may be used as a starting point for deriving a FI expression of the time evolution for the densitymatrix.We
perform aWigner transformation of the discretized von-Neumann equation (51)

( ) ( ) [( ) ( ) ( ) ( )] ( )r j r j r j r j= - D -t t t H t H t; ; i ; ; , 52W W W W1 1 1 0 1 0 1 0

where the transformation only acts on bosonic degrees of freedom in the densitymatrix and theHamiltonian.
TheWigner transform, which depends on the center fieldj1, is denoted by ( · )W , andwe refer to appendix B for
further details. Here,j1may carry additional indices that will be suppressed in the following.We emphasize that
there are no operators present anymore as they are replaced by c-number variables. Employing the product
formula for theWigner transform (B7), the last equation can bewritten as

{ }( ) ( )
( ) ( ) { ( ) ( )}

( )

* * *ò òr j
j
p

h
p

r j h j j h j j

j h j h

= - - -

´ - D + - -⎡⎣ ⎤⎦

t t

t H H

;
d d

; exp

exp i . 53

W W

W W

1 1

2
0

2
1

0 0 1 0 1 1 0 1

1
1

2 1 1
1

2 1

The product formula ofWigner transforms introduces an additional integrationwith respect to the difference
field h1. The naming ‘center field’ and ‘difference field’ ismotivated by the Schwinger–Keldysh formalism as
reviewed in [34], inwhich thefields on the forward and backward branch of the closed-time path correspond to
j j h=  2. Iterating this expression, we obtain the FI representation

( ) ( )

( ) ( ) ( ) ( )

( )

* * *ò ò  å

å

r j
j
p

h
p

r j h j j h j j

j h j h

= - - -

´ - D + - -

=

-

= =
- -

=

⎧⎨⎩
⎫⎬⎭

⎧⎨⎩
⎡⎣ ⎤⎦

⎫⎬⎭

t t

t H H

;
d d

; exp

exp i 54

W N N
k

N
k

k

N
k

W
k

N

k k k k k k

k

N

W k k W k k

0

1 2

1

2

0 0
1

1 1

1

1

2

1

2

with = + Dt t N tN 0 . The exponent in the last expression can bewritten as

( ) ( )[ ]

( )

*
* *

å åj h h
j j

j h h
j j

j hº D
-
D

- + - D
-

D
- -

=

-

=

-⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥S t

t
H t

t
Hi , i i i i ,

55
k

N

k
k k

W k k
k

N

k
k k

W k k
1

1 1

2
1

1 1

2

which is a discretized version of the Schwinger–Keldysh action. Expanding theHamiltonian up to linear order in
the difference field hk,

( ) ( )
( ) ( )

( ) ( )
*

*
j h j

j
j

h j
j

h
h = 

¶
¶


¶

¶
+H H

H H

2 2
, 56W k k W k

W k

k

k W k

k

k
k

1

2
2

we obtain
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Within this approximation, the difference field hk can be integrated out as it appears only linearly in the
exponent. This gives
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The arguments of the complexDirac-delta functions
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j j j j
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, i 59k k k k
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impose the discrete time evolution equation [57]
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j
-
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H
i . 60k k W k

k

1

In fact, this equation can be solved implicitly, such that ( )j j= -gk k 1 . To actually integrate outjk for
{ }Î ¼ -k N0, , 1 , we have to change the argument of the delta function, such that
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A similar derivation can be performed for real scalarfield theories [58]. The Jacobi determinant takes the form
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wherewe used
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and ò being a small number. This shows that the Jacobi determinant does not contribute [59], since it affects the
dynamics only at order ( ) Dt 2 . TheWigner function ( )r j t;W N N for arbitrary times tN is obtained by sampling
over initial conditionsj0, which are then evolved by (60). Expectation values of bosonic observablesO are then
given by

( ) ( ) ( ) ( )ò
j
p

r j já ñ =O t t O
d

; . 65N
W N N W N

2

5.1. Interacting boson–fermion theory
Wenow include the quantum corrections induced by the coupling to the fermions. Here,Wigner transforms are
only calculatedwith respect to the bosonic variables whereas the fermionic operators and their appropriate time
ordering still has to be taken into account. For the sake of simplicity, we denote the fermionic fields byψ and
emphasize that they carry additional indices whichwill be suppressed in the following. Furthermore, we assume
that theHamiltonian = +H H HB F can be separated into a purely bosonic partHB and a quadratic fermionic
part, †y y=H hF F , where hF is amatrix thatmay contain bosonic degrees of freedom.

TheWigner transformof the discretized time evolution equation (51) for a single time step is now given by
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wherewe emphasize again that theWigner transform ( )y jH ,W depends on both fermionic operatorsψ and
c-number variablesj. Iterating this expression, we obtain again a FI representation of the time evolution of the
Wigner function
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wherewe introduced the time ordering operatorT and the anti-time ordering operator T̄ . Based on the
assumption that = +H H HB F , wemay also separate itsWigner transform into a purely bosonic and a
fermionic contribution

( ) ( ) ( ) ( )y j j y j= +H H H, , . 68W k BW k FW k

Furthermore, we assume that the initial densitymatrix factorizes into a purely bosonic part rB as well as a purely
fermionic contribution rF . Accordingly, theWigner transform at initial times only affects the bosonic part, such
that

( ) ( ) ( ) ( )r y j r j r y=t t t, ; ; ; 69W BW F0 0 0 0 0

also factorizes. However, the factorization property of the densitymatrixmay be lost during the time evolution.
We integrate out the fermions to get the time evolution of bosonic observablesOB. Denoting the trace over
fermionic operators by TrF , we obtain
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Owing to the fact that the purely bosonic part is the same as in (54), we focus on the fermionic contributions in
the following. SinceHF is taken to be quadratic in the fermionic operators, it is convenient to introduce the
abbreviation

( ) ( ) ( )†y j y y jºh H , . 71FW FW

Here, ( )jhFW is amatrix that only depends on bosonic variables but not on fermionic operators. Further, we
introducej

k as the linear combination of center fieldjk and difference field hk,

( )j j h=  , 72k k k
1

2

andwe assume that the initial fermionic densitymatrix can bewritten as

[ ( ) ] ( )†r y j y= - hexp , 73F FW
1

0

where  is an appropriate normalization. By utilizing the identity [60]

[ ] ( ) ( )† †¼ = + ¼y y y yTr e e det 1 e e 74F
M M M Mn n1 1

withmatricesMk for = ¼k n1, , , wemay explicitly perform the fermionic trace in (70). Introducing the
evolutionmatrix

( ) ( )( ) ( )j º ¼j j- D - DS e e , 75k m
t h t h

,
i iFW k FW m

where ( )jSk m, depends on the string offieldsj j¼, ,k m for k m, we obtain

[ { } ( ) ¯ { }] [ ( ) ( )] ( )( ) †r y j j¼ ¼ = + j- + -T t T S STr exp ; exp exp Tr log 1 e 76F F N
h

N0
1

,1 ,1
FW 0

for the last line of (70). For later convenience, we also define the fermionic propagator

( ) ( )( ) ( ) ( )( ) †j jº + D = + j- -D D t k t S S1 e , 77k k
h

k,1
1

,1
FW 0

whose time evolution at order ( ) Dt is governed by

[ ( )] ( )j- = D+ +D D t D hi , . 78k k k FW k1 1

The components ofDk can be identifiedwith the equal-time correlation function †y yá ñm n as will be shownbelow.
This discrete equation can be solved via amode expansion of the operator ym as illustrated in [34]. Knowing the
mode functions then allows one to compute fermionic correlation functions.

The expansion of the Tr log in (76) up to linear order in the difference field hk then yields
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Since the difference field hk appears only linearly in the exponent, wemay integrate it out again. As compared to
the purely bosonic case, see(60), the resulting complexDirac-delta function now impose the discrete time
evolution equation [61]
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which is implicitly solved via ˜( )j j= -gk k 1 . As in the purely bosonic case, the Jacobi determinant does not
contribute at leading order. Accordingly, theWigner function ( )r j t;W N N is obtained by sampling over initial
conditions and subsequent time evolution ofj andD according to (80) and (78), respectively.
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Finally, to calculate the expectation value of bilinear fermionic observables †y y=O AF withA being a
matrix, we consider
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While the bosonic contributions are identical to (70), the fermionic trace now takes the form
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Utilizing the identity

[ ] ( ) {( ) } ( )† † †y y ¼ = + ¼ + ¼y y y y - - -A ATr e e det 1 e e Tr 1 e e , 83F
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wemay again perform the fermionic trace explicitly. Expanding the exponent up to linear order in the response
field hk while setting it to zero otherwise, wefinally obtain
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Accordingly, the discrete time evolution of á ñOF is determined by

( ) ( ) {[ ( )] } ( )já ñ - á ñ = D+ +O t O t t D h Ai Tr , . 85F k F k k FW k1 1

By explicitly introducing spatial indices and choosing d d=Amn mm nn1 1
, we recover the evolution equation ofDk

as given in (78). This shows thatDk can indeed be identifiedwith the equal-time correlation function †y yá ñm n .

5.2. Equations ofmotion for the cold atom system
Toderive the equations ofmotion for the cold atom system,we apply themethod from the previous section to
theHamiltonian (46). To this end, we rewriteHQL in terms of the Schwinger boson operators bn and dn. Upon
employing symmetric operator ordering and skipping an irrelevant constant, theWigner transformof the
Hamiltonian is given by [62]
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where bn and dn are now c-numbers, but the yn and
†yn are still fermionic operators. In the following, time is

treated as a continuous variable. Accordingly, all equations correspond to their discrete versions up to order
( ) Dt 2 . The equations ofmotion for the fermionic correlatorD(t) are given by
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where the fermionicmatrix hFW(t) reads
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The fermionic two-point function ( )†y y d= á ñ = -D Fmn m n mn nm
1

2
can be expressed in terms of the statistical

two-point function [ ]†y y= á ñF ,mn m n . Accordingly, the equations ofmotion for the bosonic degrees of freedom
are given by
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We specify initial conditions to solve the systemof time evolution equations (87) and (89). Themethod outlined
above allows us to useGaussian initial states for the fermions. In the following, we focus on the vacuumof the
Hamiltonian

( ) ( ) ( )† †å åy y y y= - - + -+H
a

M
i

2
h.c. 1 . 90f

S n
n n

n

n
n n,0 1

Since Hf ,0 is quadratic, the ground state and the dispersion relation can be determined analytically, see
appendix C. Given an optical lattice withN elementary cells, i.e. N2 lattice sites, the dispersion relation is given
by two bands w q with
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with { }Î ¼ -q N0, , 1 . The correspondingmode function expansion of the fermionic field operator reads
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and themomentum space creation/annihilation operators are definedwith respect to the fully filled lower band
∣ ñvac according to ∣ ∣ñ = ñ =a cvac vac 0q q . The bosonic samples are prepared in an excited eigenstate of

( )å=H
g a

L
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, 93b
S

n
z n,0
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,
2

determined by the number of bosonic atoms on each site ℓ † †= +b b d d2 n n n n and the eigenvalue of the operator
( )† †= -L b b d d 2z n n n n n, . The initial conditions for the bosons need to be chosen such that Gauss’s law is

fulfilled. Since the bosonic degrees of freedom are highly occupied, we approximate the initialWigner function
by

( ) ( ) ( ) ( ) r j d d= - -b d . 94W
n

n n n n0 0, 0,

In fact, the corrections to the exactWigner function are ℓ( ) 1 [57]. The explicit values of  n0, and  n0, are
specified in the next section. To initiate the dynamic evolution, the system is then quenched to an interacting
field theory governed by theHamiltonian (46).

6. Schwinger pair production and string breaking

In the followingwe discuss two fundamental phenomena of high-energy physics that are present in the
Schwingermodel andwhose dynamicsmight be addressed in the cold atom framework presented. First we
discuss how the cold atom system approaches the continuum results of Schwinger pair production and thenwe
concentrate on parameter sets that characterize given experimental systems.

6.1. Theoretical results
Schwinger pair production. In quantum electrodynamics the presence of a sufficiently strong electric field results
in the spontaneous breakdown of the vacuumby the emission of charged particle–antiparticle pairs (Schwinger
effect) [63–65]. This fundamental process has not been experimentally observed yet due to the large required
field strength of the order of the critical electric field =E M gc

2 . The observation of this effect in the cold atom
framework, however, seems to be feasible with current technology as discussed in section 4.

To study the Schwinger effect in the cold atom framework, we consider a one-dimensional lattice with N2
lattice sites, periodic boundary conditions and finite spinmagnitude ℓ ( )= +N N 2b d / . An initially constant
electric field =E E 1c inQED then corresponds to an initial configurationwith a bosonic species imbalance
∣ ( )∣ ∣ ∣= - =I N N M g0 2b d

2 2.Wefirst solve the equations ofmotion in the limit ℓ  ¥ for =g M 0.1,
aSM= 0.005 andN=512.We checked that our results are insensitive to changes of both the infrared and the
ultraviolet cutoff.

In fact, the information of the fermionic sector is encoded in the correlation function Fnm. Even though the
concept of a particle number is not uniquely defined in an interacting theory [66], it is useful to define a quasi-
particle distribution n(k) from Fnm [32, 34, 67], see also appendix C.We display the time-evolution of the total
particle number ( ) = å n kk infigure 5(a). The production rate at early times, when the backreaction of
produced particles does not yet substantially influence the dynamics, coincides with the analytically known
result [32, 67]

˙ ( )
p

p= -⎜ ⎟⎛
⎝

⎞
⎠

M E

E

E

E2
exp . 95

c

c
2

At later times, the backreaction of particles becomes important and leads to the expected deviations from the
analytic curve.Wefind phases inwhich particle production terminates and plateaus are formed [32, 34].

In the cold atom setup no fundamental particles are produced since the number of atoms isfixed.However,
the physics of pair production is still encoded in the correlation function Fnm since the staggered structure of the
cold atom setup results in the representation of fermions on even/odd sites as particles/antiparticles.
Accordingly, the hopping of fermionic atoms between neighboring sites which generates correlations Fnm can be
interpreted as pair production. As the cold atom setup shows a truncation error of ℓ( ) dr compared toQED it
is interesting to investigate this error as a function ofℓ. Infigure 5(a), we demonstrate the convergence of the
cold atombehavior towards theQED result upon increasingℓ. For the chosen parameters and ℓ = 2500, we
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still observe sizable quantitative deviations from theQED result whereas this discrepancy further decreases for
increasing values ofℓ.

Besides studying fermionic observables based on Fnm, it is also instructive to evaluate the bosonic species
imbalance ( ) ( ) ( )= -I t N t N tb d which is related to theQED electric field according to ( ) ( )=E t gI t 2. In
figure 5(b), we display the time-evolution of the electric field. Starting fromQED (ℓ  ¥), we observe the
expected behavior according towhich the production and subsequent acceleration of particle–antiparticle pairs
results in plasma oscillations [32, 34, 68]. Accordingly, the electric field decreases as the particle number
increases and particle creation effectively terminates once the field drops below a certain level, corresponding to
the plateaus in the particle number infigure 5(a).

In the cold atom setup, the physics of plasma oscillations is observed aswell. The fermionic hopping reduces
the initial bosonic species imbalance ( ) = >I M g0 2 02 2 until it changes sign and reaches a localminimum

( ) <I t 0min . Subsequently, the species imbalance increases again, changes sign and reaches a localmaximum
and so forth. As for the particle number, we observe that the cold atombehavior converges towards theQED
results upon increasing the value ofℓ.

The results in figure 5 are all based on system sizes ofN=512 forwhich infrared artifacts are suppressed. In
the followingwe study the influence of the system size and display the time-evolution of the bosonic species
imbalance I(t) for different values ofN andfixed ℓ = 105 infigure 6.Whereas the behavior remains the same
qualitatively, the actual quantitative behaviormight substantially change upon decreasing the value ofN. ForN
being too small, we observe oscillations on top of the plasma oscillations which can be attributed to the finite
momentum resolution.Moreover, even though a reasonable agreement betweenQED and the cold atom setup
is found for thefirst oscillation period forN=512, we still observe sizable deviation at later times.

String breaking.The physics of confinement in the theory ofQCDmanifests itself by the formation of a string
between two external, static quarks. This confining string can break in theories with dynamical fermions by the
production of charged particle–antiparticle pairs which result in a screening of the static sources [69–74]. QED
in one spatial dimension shares important aspect of dynamical string breaking and, therefore, serves as a toy
model for addressing related questions [33, 38, 40, 41, 44].

Figure 5.Pair production: (a) time-evolution of the total particle number  for different values ofℓwith fixed =g M 0.1,
=a M 0.005S andN=512. The gray line corresponds to the analytic result (95).We observe convergence towards theQED result

upon increasing the value ofℓ. (b)Time-evolution of the electric fieldE for different values ofℓwithfixed =g M 0.1, =a M 0.005S

andN=512. The backreaction of the created particles results in plasma oscillations.We again observe convergence towards theQED
result upon increasing the value ofℓ.

Figure 6.Pair production: time-evolution of the electricfield E for different values ofN andfixed =g M 0.1, =a M 0.005S and
ℓ = 105.
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To study dynamical string breaking inQED in one spatial dimensionwe prepare two static chargesQ
located atd 2 on the spatial lattice with N2 lattice sites. The corresponding electric field between the charges
is given by =E Q0 while it vanishes outside. In the cold atom setup, this corresponds to a bosonic species
imbalance of ( ) =I Q g0 2 inside the string ∣ ∣ <x d 2whereas it vanishes outside of it.

Wefirstmake contact to the correspondingQED literature [33, 44] by considering the limit ℓ  ¥ and
choosing =g M 1, aSM= 0.1 andN=1024. To this end, we study the time-evolution of the electric field En
for =d a 287S and display different instances of time infigure 7. Starting from the initialfield configuration,
thefield energy is transferred to the fermionic sector by particle–antiparticle production such that the amplitude
decreases. The dynamics is such that the opposite charges are produced locally on top of each other and are then
accelerated by the electric field. Depending on the value of d, the initial stringmay ormay not contain enough
energy to produce the required chargesQ to screen the external charges. In the latter case the string does not
break completely.

Infigure 8we display the electric field in the center of the string, andwe choose d such that the produced
amount of charge exactly screens the external charges, which is attributed to the phenomenon of string breaking.
Considering the cold atom setup, thefinite value ofℓ then again introduces deviations from theQEDbehavior.
Most notably, we observe that the breaking of the string happens already for smaller distances <d dCA QED for
the same parameters =g M 1, aSM= 0.1 andN=1024. As expected, we observe convergence towards the
QED results upon increasing the value ofℓ.

Finally, we consider fermionic observables which are defined in terms of the correlation function Fnm.
Unlike in the Schwingermechanism, however, wemay observe charge separation directly owing to the spatially
inhomogeneous configuration. Accordingly, we focus on the expectation value of the charge density.More
specifically, we consider the average charge density on two neighboring lattice sites in order to coarse grain the
staggered structure, which is an artifact of the chosen fermion discretization

¯ ( ) ( )= + = - ++ + +q q q F F
1

2
. 96n n n n n n n2 2 1 2 ,2 2 1,2 1

Infigure 9we display the time evolution of the charge density q̄n. As described previously, the dynamical charges
are produced on top of each other such that the total charge density vanishes initially.

Figure 7. String breaking: electricfieldE at different times · =t M 0.01 (black), · =t M 8.42 (blue) and · =t M 24.93 (red) for
ℓ  ¥, =g M 1.0, =a M 0.1S andN=1024.

Figure 8. String breaking: time evolution of the electric fieldE in the center of the string for different values ofℓwithfixed
=g M 1.0, =a M 0.1S ,N=1024. The distance between the charges is =d a 287S . The zero-crossing of the electricfield is

attributed to the phenomenon of string breaking.
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The dynamical charges are then separated by the existing field such that positive charges are accelerated
towards-Q and negative charge towards+Q. As the dynamical charges cannot be considered as hardcore
particles, the charge density spreads beyond the static charges resulting in the outwards directed parts of the
charge density. Accordingly, the external charges are gradually screened and finally result in the breaking of the
string. At asymptotic times, the external charges are then supposed to become screened by an exponential cloud
of dynamical fermions [24, 33, 44, 75].

6.2. Experimental protocol
After discussing strong-fieldQED in the continuum limit, we nowpresent an experimental protocol of
initialization, evolution and detection that allows us to observeQEDwith cold atoms. It is important to note that
it does not suffice to only provide the required symmetry of theHamiltonian in order to quantum simulate a
gauge theory but, equally important, also the initial conditions have to fulfill Gauss’s law as accurately as
possible. The second requirement can only be guaranteed to a certain degree, however, the presented
preparation scheme is consistent with the initial conditions chosen for the theoretical description.

According to section 3.4, the fermions can be prepared in the lowest band via a subsequential adiabatic ramp
of aV f

2, and then aV f
1, . If thewavelength of this lattice is well chosen, the bosonic linkswithNB atoms are also

directly prepared at the intersection between the fermionic sites. In particular, the chosenwavelength is
supposed to be red detuned for 6Li and blue detuned for 23Na. To apply an initial electric field according to (94),
the bosons need to be prepared in a staggered structure of alternating imbalance. This can be achieved by
controlling the imbalancewith a linear coupling between the two bosonic states, e.g., via rf coupling or two
photonmicrowave coupling. The detuning of the linear coupling for every second site is controlled by utilizing a
species selective standing light wavewith twice the lattice period for the bosons. Properly chosen, one can
implement aπ pulse for every second site that leads to the required ‘staggered’ imbalance of the bosons. The
subsequent dynamics of the system is initiatedwith a quench of themass term frombeing far off-resonant.

We start our benchmarking with the parameters presented in section 4, which correspond to =g M 2.6,
=a M 0.05S andN=100. For these initial conditionswe can benchmark a possible experimental realization via

the FI approach. This allows us to investigate the role of the experimentally relevant parameters on the physics of
the Schwinger effect, especially the spinmagnitude ℓ = N 2B and the coupling strength g. To check the
convergence towards the latticeQED result for given parameters we also vary the spinmagnitude,
ℓ { }Î ¥10, 20, . Since the experimental parameters allow for the exploration of the strong coupling regime

>g M 1, the range of validity of the theoretical treatment has to be further investigated [76].We expect,
however, that the experiment shows the same qualitative behavior as shown infigure 10.

Infigure 10(a)wedisplay the time evolution of particle number per lattice site, wherewe use again the
adiabatic definition from appendix C. First, we observe that particle production happens initially on time scales
of the order of c NBF B, which is short compared to the limiting particle losses, and thus accessible in the
experiment. As to be expected from c > DNBF B we also observe initial oscillations, which are smeared on times
> Dt h . The particle number per lattice site then reaches a plateauwith ( )  -t N 10 3. For the given

parameters, wefind convergence towards theQED results already for ℓ = 20which, as compared to the ideal-
typical parameters from the previous section, can be traced back to the larger value of the coupling =g M 2.6.
In general it turns out that the required value ofℓ is inversely proportional to g/M to obtain convergence
towards theQED result, see also the simulations of dynamical string breaking infigure 8.Owing to the fact that
realistic values of the spinmagnitude are of the order of ℓ ( )= 100 , we can expect genuineQEDbehavior for
the proposed experimental setup. Thefluctuations in the number of bosons, which is expected to be of the order
of a few percent, are not expected to substantially alter the reported behavior on the time scales considered.We

Figure 9. String breaking: time-evolution of the charge density q̄n forfixed ℓ  ¥, =g M 1.0, =a M 0.1S andN=1024. The
distance between the charges is =d a 287S . The charges are produced on top of each other and are then separated by the field.
Positive charges are accelerated towards-Q whereas the negative charges are accelerated towards+Q.
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also display the electricfield ( ) ( )=E t gI t 2 as determined by the species imbalance ( ) ( ) ( )= -I t N t N tb d in
figure 10(b). The production of particles results in a decrease of the species imbalance, which quickly drops
below the critical value so that particle production terminates.

Conceptually themomentumdistribution of the produced particles can be read out precisely via band
mapping [30], however, this is very challenging for the given parameters as one can deduce from figure 10.
Nevertheless, the underlying physics of particle production can be already accessed from the integrated number
of produced particles. According tofigure 10, around 0.2 particles have to be detected on average for a lattice
withN=100 sites. Current experimental setups allow realizing»30 copies of the cold atomQED systemby
employing an array of one-dimensional traps. Thus one expects integrated ( ) 10 particles which can be
detectedwithfluorescence in a subsequentmagneto-optical trap forwhich single particle resolution is well
established [28].While the detection of the produced particles is very challenging, the bosonic species
imbalance, i.e. the electric field, changes significantly. Thus, the Schwinger effect in a cold atomic setup can also
be observed bymeasuring the integrated boson imbalance via standard absorption imaging techniques.

The coupling strength g/M is another experimentally relevant parameter of importance. Accordingly, we
study the dependence of the particle number on choosing slightly different couplings { }Îg M 0.4, 1.0, 2.6 for
fixed parameters =a M 0.05S ,N=100 and ℓ  ¥ infigure 11.We note that we have to adapt the initial
species imbalance ( ) =I M g0 2 2 2 in order to provide an initial criticalfield Ec in each case.Most notably, the
simulations indicate that the first plateau in the particle number is a stable signature for the non-trivial interplay
of the electricfield and the produced fermions.Wefind, however, that the number of produced particles at the
first plateau is inversely proportional to the ratio g/M. As expected, smaller couplings g/M result in a slowdown
of dynamics such that the first plateau is reached at later times.

7. Conclusion

Thiswork ismeant as a guide towards afirst large-scale quantum simulation of a lattice gauge theory with
dynamical gaugefields. For that purpose, we concentrate on the comparatively simple yet highly nontrivial

Figure 10.Particle production in 23Na–6Li setup: The initial production of particles is driven by c NBF B with an initial imbalance of
( ) =I 0 0.3, which subsequently levels off so that the particle number reaches a plateau.We observe quick convergence towardsQED

as function ofℓ, where the parameters for this simulation are =g M 2.6, =a M 0.05S andN=100.

Figure 11.Coupling dependence in 23Na–6Li setup: time-evolution of the particle number for different =g M 0.4, 1.0, 2.6 and
fixed =a M 0.05S , ℓ = 100,N=100.We adapt the initial species imbalance to provide for a critical initialfield Ec in each case.
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example ofQED in (1+1) space–time dimensions and provide strong evidence that present-day experimental
resources and protocols are sufficient to observe the dynamical phenomena of Schwinger pair production and
string breaking in the laboratory using ultracold atoms.

Our results point out that experimental realizations using coherentmany-body states residing on the links of
an optical lattice can be highly efficient for quantum simulations of such high-energy particle physics
phenomena. This represents a paradigmatic change in view of the large number of studies in the literature that
focus on a small number of atoms per link. To substantiate ourfindings, we exploit the long-term experience
that has been gainedwith the engineering andmanipulation of related setups of fermions interacting with
coherent samples of bosonic atoms.

For the example of a Bose–Fermimixture of 23Na and 6Li atoms, which is characterized by a plethora of
potentially gauge symmetry breaking interactions, we apply external potentials and fields such that one ends up
with a latticeHamiltonianwith local gauge invariance. In this way, themicroscopic parameters describing the
bosonic and fermionic atomdegrees of freedom are connectedwith the parameters describing the gauge field
theory.

We use the experimentally available parameter range of the cold atom system in benchmark calculations and
convergence towards the full QED results is observed. The very detailed comparisons of the real-time dynamics
of the atomic system in the large boson number regime are possible using powerful FI techniques, which
complement exact diagonalization or tensor networkmethods that are applicable in the small boson number
regime.

A future experimental implementation of gauge symmetries in aflexible cold atom setup can explore new
parameter ranges and phenomena, even beyondwhat is realized by nature so far.While the gauge coupling of
QED isweak, with a 1 137em in nature’s three spatial dimensions, studies at stronger couplings in various
dimensionswould be extremely interesting. No conventional computational technique has so far been able to
predict the real-time dynamics ofQEDorQCD for couplings of order one—despite the fact that this is a crucial
missing link in our understanding of the thermalization process of QCDas explored in relativistic heavy-ion
collision experiments. The experimental setup discussed in this workmay provide already access to answering
important aspects of longstanding open questions.

Acknowledgments

We thankMDalmonte, EDemler, A Frishman, TGasenzer, J Göltz,MKarl, NMüller, J Pawlowski, A
Polkovnikov, I Rocca andU-JWiese for helpful discussions and collaborations on relatedwork. VKasper was
supported by theMax Planck society. FHebenstreit acknowledges support from the EuropeanResearch
Council under the EuropeanUnion’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement
339220. This work is part of and supported by theDFGCollaborative ResearchCentre ‘SFB 1225
(ISOQUANT)’.

AppendixA.Overlap integrals

In this appendixwe determine the overlap integrals which appear in themain text. To this end, we consider an
optical lattice with lattice constant a and tight radial confinement so that we assume that the radial and
longitudinal directions decouple. Further, the bosonic and fermionic atoms are supposed to be in the ground
state with respect to the radial direction. Assuming a harmonic potential, the ground state wave functions
introduced in (14) are given by

( )( ) ( ) ( )j p= ^
- - ^y a e , A1s s,

2 1 4
y

as
1
2 ,

2

with the harmonic oscillator length scale

( )

w
=^

^
a

M
. A2s

s s
,

,

The expressions for ( )j zs follow from replacing y by z. Here, we assumed that the ground state wave functions
are independent of themagnetic quantumnumberα.

In the longitudinal direction, the optical lattice potential is determined by

( ) ( ) ( ) =V x V kx acos 2 , A3b b
1

2

( ) ( ) ( ) ( ) = +V x V kx V kx bsin 2 cos , A3f f f
1

2
2

2
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with p=k a and >V 0b
1 . The locations of theminima of the bosonic potential are at

( )=
+

x
n

a a
2 1

4
. A4b n,

In the vicinity of the potentialminimum xb n, , wemay expand the potential in a Taylor series to quadratic order

( ) ( ) ( ) » -V x k V x x4 . A5b b
b n

2
1 ,

2

Theminima in the fermionic potential are determined by

( )=x
n

a
2

. A6f n,

For the fermionic atoms, there are two different types of localminima andwe need to expand the optical
potential in a Taylor series to quadratic order around both of them. For even sites, such as =x 0f ,0 , and odd sites

sites, such as =x af ,1
1

2
, we obtain

( )∣ ( ) ( ) ( ) » + - -V x V V V k x x a4 , A7f
x

f f f
f2 1 1

2
,0

2
f ,0

( )∣ ( ) ( ) ( ) » + -V x V V k x x b4 . A7f
x

f f
f1 2

2
,1

2
f ,1

The quadratic terms in the potential expansions determine the harmonic oscillator frequencies

( )w =M k V a
1

2
4 , A8b b

b
,

2 2
1

( ) ( )w = -M V V k b
1

2
4 , A8f f L

f f
, ,

2
1 1

2

( ) ( )w = +M V V k c
1

2
4 . A8f f R

f f
, ,

2
1 2

2

We require - >V V4 0f f
1 2 such that the oscillator frequencies are real. Note again that we have two different

frequencies for the fermions corresponding to even/odd sites whereas there is only a single bosonic frequency.
The corresponding oscillator length scales are then given by

( )




w
=a

M
a, A9b

b b
,

,

( )




w
=a

M
b, A9f p

f f p
, ,

, ,

with =p L R, . The correspondingWannier functions are

( )( ) ( ) ( ) p= - -
-

w x a ae , A10n
b

b,
2 1 4

x xb n
ab

1
2

,
,

2

( )( ) ( ) ( ) p= - -
-

w x a be , A10n
f

f ,
2 1 4

x xf n
af L

1
2

,
, ,

2

wherewe assumed again that thewave functions are independent of themagnetic quantumnumber, i.e.
( ) ( )= aw x w xn

b
n

b
, and ( ) ( )= aw x w xn

f
n

f
, .

Upon performing the dimensional reduction and change of basis toWannier function, the following overlap
integrals appear in the interaction terms:

∣ ( )∣ ∣ ( )∣ [ ( ) ( )] ( ) ( ) ( )*ò ò òj j=U y y z z x w x w x w x w x ad d d A11b
b b n

b
n
b

n
b

n
b

n
4 4

1 2 3 4

∣ ( )∣ ∣ ( )∣ [ ( ) ( )] ( ) ( ) ( )*ò ò òj j=U y y z z x w x w x w x w x bd d d A11f
f f n
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n
f

n
4 4

1 2 3 4

∣ ( ) ( )∣ ∣ ( ) ( )∣ [ ( ) ( )] ( ) ( ) ( )*ò ò òj j j j=U y y y z z y x w x w x w x w x cd d d . A11bf
b f b f n

f
n
b

n
b

n
f

n
2 2

1 2 3 4

These areGaussian integrals which can be determined analytically, see (A1) and (A10). In section 4we further
use the bosonic and fermionic tunnel elements

( ) ( ) ( ) ( )
ò= -

¶
¶

+ +

⎛
⎝⎜

⎞
⎠⎟J x w x
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Appendix B. Coherent states andWigner transform

In this appendixwe summarize themain definitions that are used in section 5 (see also [77]). The coherent state
of a single bosonicmode

∣ ∣ ( )∣ ( )∣ ∣ †j jñ = ñ = ñj jf- De e 0 0 , B1
1
2

2

is defined as the right eigenstate of the bosonic annihilation operator, ∣ ∣f j j jñ = ñ, wherewe introduced the
displacement operator

( ) ( ) ( )† *j jf j f= -D exp . B2

The identity operator reads

∬ ∣ ∣ ∣ ∣ ( )ò
j j
p

j j
j
p

j j= ñá º ñá
d Re d Im d

. B3
2

The complexDirac-delta function

( ) ( ) ( ) ( )d j j d j j d j j- º - -Re Re Im Im B41 2 1 2 1 2

has the integral representation

( ) ( )* *ò
j
p

pd l=j l jl-d
e . B5

2

TheWigner transformof an operator ( )†f fO , is given by

( ) { ( )} ( )† * *òj
l
p

l= lj jl-O OD
d

Tr e . B6W

2

For =O AB with two observables ( )†f fA , and ( )†f fB , theWigner transforms can be expressed as
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AppendixC. Particle number distribution

In this appendixwe define and determine the particle number distribution n(q) in terms of the correlation
function ∣[ ]∣†y y= á ñF vac , vacnm n m . To this end, we consider the fermionic part of theKogut–Susskind
Hamiltonian (1)

( )
( ) ( )

† † †
†å

y y y y
y y=

-
+ -

=

-
+ +

H
U U

a
M

i

2
1 . C1

n

N
n n n n n n

S

n
n n

0

2 1
1 1

Wemay diagonalize theHamiltonian by treating the link variablesUn as c-number background for the fermions,
as it is also done in the FI approach. To this end, we define the Fourier transformation according to

˜ ( )åy y=
=

-
p

N
a

1

2
e , C2n

q

N

q
0

2 1
qn

N
i

˜ ( )åy y=
=

-
- p

N
b

1

2
e . C2q

n

N

n
0

2 1
qn

N
i

Wenote that the system is still translation invariant over two lattice sites if we study Schwinger pair production,
i.e. = +U Un n l2 with { }Î ¼ -l N0, , 1 . Denoting the even links by =U U neven 2 and the odd links by

= +U U nodd 2 1, we have

( ) ( )= + -U U U1 C3n A
n

B

with ( )= +U U U 2A even odd and ( )= -U U U 2B even odd . TheHamiltonian can then bewritten inmatrix
notation according to
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with

( ) ( )* *p p= - =- p p
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U U a

i

2
e e , C5q
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A A q

q
N

q
N

i i

( ) ( )*= + +- p p
M M
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2
e e . C5q
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B B

q
N

q
N

i i

Fermionswithout a gaugefield correspond toUn= 1 leading to =U 1A and =U 0B . The eigenvalues of this
Hamiltonian are given by w w=  q q, with

( )*w = + - -p p
M

a
U U

1
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e e . C6q

S

2
2 even odd
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N

q
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The corresponding normalized eigenvectors are
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In fact, every q-mode is diagonalized by a unitary transformationmatrix ( )= + -U u u,q q q . This defines quasi-
particle creation/annihilation operators

˜
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with respect to the instantaneous vacuum state ∣Wñ, fulfilling ∣ ∣Wñ = Wñ =a c 0q q . TheHamiltonian is then given
by

( ) ( )† †åw= + -
=

-

H a a c c 1 . C9
q

N

q q q q q
0

1

Wedefine the quasi-particle distribution function n(q) as the expectation value of the instantaneous number
operator

( ) ∣ ∣ ( )† †º á + ñn q a a c cvac vac , C10q q q q

where the asymptotic ground state ∣ ñvac is determined by theHamiltonianwithUn= 1. The expectation value of
theHamiltonian is
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The two contributions of n(q) are found by employing the Bogoliubov transformation (C8) such that
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The Fourier transformation of the correlation function Fmn is determined by
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with { }¢ Î ¼ -q q N, 0, , 2 1 . Accordingly, n(q) can bewritten as
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where the energy density in Fourier space is given by

[ ( ˜ ˜ ) ˜ ˜ ] ( )*e p= - - -+ + + +F F M F M F
1

2
. C16q q q N q N q q q q N q q q q N, , , ,

The total particle number is then found by summing over all Fouriermodes

( ) ( ) å= n q . C17
q

In the cold atom system, we proceed analogously but replace the link operators by the corresponding Schwinger
bosons ℓ ℓ[ ( )] * + -U b d1n n n

1 2 . As the bosonic degrees of freedom are again considered as c-numbers, we
obtain very similar expressions for the particle number.
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