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Abstract

We discuss the experimental engineering of model systems for the description of quantum
electrodynamics (QED) in one spatial dimension via a mixture of bosonic **Na and fermionic °Li
atoms. The local gauge symmetry is realized in an optical superlattice, using heteronuclear boson—
fermion spin-changing interactions which preserve the total spin in every local collision. We consider
alarge number of bosons residing in the coherent state of a Bose—Einstein condensate on each link
between the fermion lattice sites, such that the behavior of lattice QED in the continuum limit can be
recovered. The discussion about the range of possible experimental parameters builds, in particular,
upon experiences with related setups of fermions interacting with coherent samples of bosonic atoms.
We determine the atomic system’s parameters required for the description of fundamental QED
processes, such as Schwinger pair production and string breaking. This is achieved by benchmark
calculations of the atomic system and of QED itself using functional integral techniques. Our results
demonstrate that the dynamics of one-dimensional QED may be realized with ultracold atoms using
state-of-the-art experimental resources. The experimental setup proposed may provide a unique
access to longstanding open questions for which classical computational methods are no longer
applicable.

1. Introduction

The experimental engineering of atomic model systems for the description of dynamical gauge fields represents
amajor challenge with most important applications. Fundamental gauge fields mediate the strong and
electroweak forces between matter in the standard model of particle physics, where the photon of quantum
electrodynamics (QED) is a most prominent representative [ 1]. Gauge fields can also arise as emerging degrees of
freedom in strongly correlated condensed matter systems such as related to the quantum Hall effect [2] or
effective theories of spin liquids [3]. Most pressing questions concern the real-time evolution of strongly
interacting gauge fields coupled to fermionic matter, such as realized during the early stages of our universe and
explored in collisions of ultrarelativistic nuclei at giant laboratory facilities [4].

The complex many-body dynamics of gauge fields is often very difficult to study in the original systems both
experimentally and theoretically. For instance, in a heavy-ion collision most experimental observables give
information only about the integrated space—time evolution of the system. Its theoretical description is
complicated by the fact that ab initio computer simulations of the real-time dynamics can only be achieved in
certain limiting cases because of the so-called sign-problem [5]. Here, the experimental engineering of atomic
quantum simulators appears as an attractive alternative, which may provide a unique access to longstanding
open questions [6—8].

Compact table-top experiments with ultracold atoms are rather easily accessible and provide a very flexible
testbed, with tunable interactions or reduced dimensionality by shaping the confining optical potential [9, 10].

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Since setups employing ultracold quantum gases can be largely isolated from the environment, they offer the
possibility to study fundamental aspects such as the unitary real-time evolution of systems with engineered
Hamiltonians to high accuracy [11].

The realization of external static gauge fields has been achieved in many impressive experiments with
ultracold atoms, such asin [12, 13]. In contrast, no experimental implementation of gauge fields as dynamical
degrees of freedom, as in QED or quantum chromodynamics (QCD), in an atomic setup has been achieved yet,
although it has been theoretically discussed in [6—8]. The presence of dynamical gauge fields in the description of
a physical system reflects an underlying local symmetry, whose space—time dependent transformation
properties significantly constrains the quantum dynamics allowed. Implementing such a gauge symmetry for a
system of bosonic and fermionic atoms can lead to involved constructions, which often rely on higher-order
processes that are challenging to control experimentally.

Further experimental progress can be facilitated with the identification and implementation of simple gauge
field theory examples. Abelian gauge symmetries, such as the local U(1) symmetry of QED, clearly stand out in
this respect, in particular, if they are implemented in one spatial dimension. Abelian gauge theories in the
continuum are simpler than non-Abelian theories such as QCD because of the absence of self-interactions of the
gauge bosons. In QED the photon interacts only via processes involving electrons and positrons, while the
gluons in QCD directly interact with each other. In a lattice-discretized theory in more than one spatial
dimension even QED magnetic fields appear as ring exchange interactions which makes a possible experimental
implementation via effective interactions [14, 15], higher-order perturbative processes [16] or ancillary degrees
of freedom [17, 18] involved. In one spatial dimension, however, no QED magnetic field exists. This
dramatically simplifies possible descriptions of the interaction of the remaining electric field with the fermions.
In this case, the interaction terms that respect the local gauge symmetry can be realized using heteronuclear
boson—fermion spin-changing interactions which preserve the total spin in every local collision [16, 19]. While a
Jordan—Wigner transformation can be used to express the fermions as quantum spins, our construction does
not rely on this mapping but directly simulates the fermionic degrees of freedom. This is particularly important
in view of experimental implementations of gauge theories in dimensions larger than one, for which the Jordan—
Wigner mapping is less useful. Despite the reduced complexity, the Abelian gauge theory setup in (1 + 1) space—
time dimensions still offers a rich phenomenology, including important dynamical strong-field phenomena
such as Schwinger pair production [19, 20] and string breaking [21], which are highly relevant for many systems
also in more than one spatial dimension.

Very interesting and detailed suggestions have been made to realize gauge field dynamics in atomic systems,
where many proposals concentrate on quantum link models [6]. In these models the gauge fields are regularized
using quantum link variables which have a finite-dimensional link Hilbert space, and whose dimension is
determined by the number of bosonic atoms residing on a given link between fermionic atoms in an optical
lattice. Since the Hilbert space of a quantum link model is finite, the mapping to atomic systems is in general
facilitated. Many ground-breaking investigations have been performed using a small number of bosons per link
[8,15,16,21,22]. Alow-dimensional Hilbert space also allows one to achieve theoretical estimates based on
diagonalization or tensor network techniques [23, 24]. Since the Hilbert space of QED or QCD itself is infinite-
dimensional, the Hamiltonian formulation of the original gauge field theory on a spatial lattice [25] can be
recovered for a sufficiently large number of bosons".

In this work we follow [19] and consider a mixture of bosonic **Na and fermionic °Li atoms in a one-
dimensional optical superlattice. We concentrate on the regime with a large number of bosons residing on each
link, such that the results of the original lattice gauge theory in the continuum limit are recovered. Our
discussion about the range of possible atomic system’s parameters builds, in particular, upon experiences with
related experimental setups of fermions interacting with coherent samples of bosonic atoms [26—31]. The other
important ingredient of our investigation concerns benchmark calculations of the atomic system and of the
original gauge theory. Since exact diagonalization techniques are no longer applicable in this case, we employ
powerful functional integral (FI) techniques [ 19, 32—35]. They allow us to do ab initio calculations in an
important range of strong-field phenomena. Reproducing these benchmark results with future experimental
realizations will be a crucial milestone, before new regimes can be explored that are no longer accessible with
classical computational methods.

This publication is organized as follows. In section 2 we briefly review QED in (1+1) space—time dimensions,
i.e. the massive Schwinger model. We employ a lattice discretization with staggered fermions to connect the
gauge theory to an atomic model in an optical superlattice with angular momentum conserving scattering

4 The mapping becomes more involved if only a small number of bosons per link is employed. In this case, the quantum fields of the original
gauge theory can arise as low-energy effective degrees of freedom of the theory of quantum links after dimensional reduction. More precisely,
the quantum fields of a gauge theory in D dimensions are obtained from a (D + 1)-dimensional theory of quantum links. To recover one-
dimensional QED or QCD would, therefore, require a two-dimensional quantum link setup where the extra dimension could also be
implemented with the help of internal degrees of freedom [6].
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Figure 1. Schematic representation of the Hamiltonian (1): the fermionic modes 1), on each lattice site (orange circles) interact with
U(1) variables at each link (E,,, U,), that connect neighboring lattice sites (green clouds).

processes. In section 3 we discuss in detail a possible experimental implementation of the Schwinger model in a
mixture of bosonic and fermionic atoms, where gauge invariance requires a correlated hopping of the staggered
fermions with the Schwinger bosons residing on the links. While the basic discussion follows to a large extent
[16], we concentrate on the implementation in specific systems with given experimental parameters to ensure
the relevant separation of scales that is required to suppress contributions from gauge symmetry violating states.
Moreover, we employ species-dependent lattices to separate the bosonic and fermionic degrees of freedom in
order to simplify the experimental realization. In that section we also translate the basic quantities of the cold
atom system to the fundamental parameters of the corresponding lattice gauge theory. A set of viable parameters
to be employed in an upcoming experiment is presented in section 4. The later sections are devoted to
benchmark calculations in order to demonstrate that relevant QED processes can indeed be described using the
available experimental parameters of the atomic setup. In section 5 we review the FI approach and derive
equations of motion for the cold atom system. This method allows us to accurately describe the nonequilibrium
dynamics of coherent bosonic fields coupled to fermions from first principles. In section 6 we study the real-time
dynamics of Schwinger pair production and string breaking in the cold atom system. This section is an extension
of the pair-production results of [ 19] to the new parameter sets established in this work, and to the phenomenon
of string breaking that has not been considered in the large boson number regime of the atomic setup before. We
present the dynamics of various experimentally accessible observables and discuss the accuracy with which QED
can be represented in practice by a finite atomic system. We conclude and give an outlook in section 7.

2. The Schwinger model revisited

Quantum electrodynamics for massless fermions in one spatial dimension (Schwinger model) is an exactly
solvable field theory [36]. On the other hand, no analytic solution is known for massive fermions (massive
Schwinger model) [37]. From a phenomenological point of view, a particular interest in this model stems from
the fact that it shares several characteristic aspects with the theory of strong interactions (QCD) such as
spontaneous chiral symmetry breaking or dynamical string breaking (see e.g. [38—41]).

Nonperturbative studies of the massive Schwinger model are typically based on a lattice discretization of the
continuum theory. The construction of a hermitean, local and translation-invariant lattice theory of fermions
necessarily entails the appearence of unphysical degrees of freedom, the so-called fermion doublers [42]. One
possibility to resolve this problem is by making the spurious doubler modes heavy viaa Wilson term [43] and we
refer to [32, 33, 44] for numerical studies using this approach. In this work, we employ the alternative staggered
fermion discretization where the Dirac spinor is decomposed in such a way that the doubler modes can be
disregarded as they decouple. As a consequence, the particle and antiparticle components reside on neighboring
lattice sites [25]. The Hamiltonian of the theory is given by

s = % S8 + MY (-0 — - WUt — e, 0
n n S n

asindicated in figure 1. Here, as denotes the lattice spacing and M the fermion mass [25, 36] and we choose to
work in natural units (Z = ¢ = 1). The staggered fermion field operator ¢,, which resides on lattice sites ,
fulfills the canonical anti-commutation relation {¢),, ¥} = 6,,,. The fermionic charge operator is defined as

(=D" -1

— "
Qn_wn/l/)n—i_ 2

(@)

Accordingly, the presence of a fermion at an even site is interpreted as particle (Q, = +1) whereas the absence of
afermion at an odd site is interpreted as antiparticle (Q,, = —1). The unitary link operator U,, and the electric
field operator E,, act between neighboring lattice sites n and #n 4+ 1and obey the commutation relations

[U, Ul =0, (3a)
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[Em Um] = g(snm Um> (3b)

where gdenotes the gauge coupling. This algebra entails an infinite-dimensional local Hilbert space. For the U(1)
gauge theory, the Gauss’s law operator

G, =E,—E,_1— an 4

generates local gauge transformations and commutes with the Hamiltonian [Hgs, G,] = 0.

Quantum link models have been proposed as an alternative formulation of gauge theories for which finite-
dimensional representations of the link algebra exist [45—47]. Recently, the prospect of constructing quantum
simulators for gauge theories has boosted the interest in these models as their implementation in atomic systems
could be greatly facilitated. In this approach, the electric field operator is identified with the z-component of the
quantum spin operator L, ,,

E,—¢gL,, ©)

whereas the link operators are regarded as raising and lowering operators
Up = [£( + DIV2Ly (6a)
Ul = [£( + DIV, (6b)

with Ly , = Ly, % iL, ,. The quantum spin operators fulfill the angular momentum algebra

[Lins Lj,m] =i0um €ijk Ly, » and £ denotes the spin magnitude. Consequently, the commutation relation (30) is
identically fulfilled, whereas the commutation relation (3a) is no longer valid if £ is kept finite, but replaced by
[Uy, Ul = 28,mEm/ (g€ (¢ + 1)] which goes to zero onlyas # — oo. Only in this limit the unitarity of the link
operator U, is restored again. However, it is central for the whole construction that a finite £ does not affect
gauge invariance as generated by the Gauss’s law operator

G, — Low—Lon1— Qn 7

with the Hamiltonian of the quantum link Schwinger model

; TLL,, .1 — h.c.). 8
2 JFC D Eﬂ:(% A Vnt1 c.) (8)

The finite-dimensional representation of the angular momentum algebra makes its implementation in systems
of ultracold atoms feasible. For representations with small £, numerical methods based on diagonalization or
tensor network states provide valuable information about static and dynamic properties [23, 24, 48—50]. Of
course, it is an important question to understand the connection between the finite-dimensional representation
of cold atom gauge theories and the infinite-dimensional representation corresponding to QED. In [19] the
large-Z regime and the convergence to # — oo results, i.e. QED itself, has been established using powerful FI
techniques for strong-field phenomena. In section 5 we describe the FI approach and apply it to obtain
benchmark results for the Hamiltonian (8) using parameter sets motivated by possible experimental
realizations.

2
a "
Hop = %Z L2, + MY (— 1), —
n n

3. Experimental realization

Our starting point for the realization of the U(1) gauge theory coupled to fermionic matter in an ultracold atom
experiment is a genuine interacting gas of fermionic and bosonic atoms [7]. To facilitate the connection with the
experiments we reintroduce /i where appropriate. The bosons ¢, (x) and fermions v/, (x) fulfill the canonical
commutation and anti-commutation relations, respectively,

(9, (xD), ¢:3 (x2)] = {¥a (xD, T/JTQ (X))} = 0apd (X1 — Xp). )

Here, the greek labels «v, 3 denote magnetic hyperfine states of the atoms. The particles are confined by external
potentials and interact via inter- and intra-species scattering processes. The corresponding Hamiltonian consists
of three parts, H = Hr + Hy + Hj. Thekinetic part, Hr, describes the movement of the atoms,

— 52 3. 2 52 3. 2
Hy = Z—MdeX%:IV%(X)l + Mfdx?wa(xn (10)

with masses M, and M, 2 The potential energy contribution, Hy, is determined by the external potentials
according to

Hy = [ dx S Vi e, + [ Ex V60w v 0, (i1
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Figure 2. Realization of the staggered lattice structure. The black arrows indicate the dipole lasers which are used in the experimental
setup. (1) Blue/red detuning for fermions/bosons generates phase-shifted optical potentials for bosons and fermions with a lattice
period a. (2) The superposition of the lattice with period a by a superlattice of period 2a generates the staggered structure for the
fermions.

whereas the atomic scattering processes are described by

=< [ & gl 6,006,006,06, 0

afyd

+ % [ xS gl s vh 000w 0w, 0

afyé

5 [ ax el Wi wd 00 00, (12)
afyd

The coupling constants are determined by the scattering lengths of the inter- and intra-species scattering
processes. Throughout this work, we indicate purely bosonic terms by the superscript b, fermionic terms by the
superscript fand boson—fermion interactions by the superscript bf.

In the following, we describe in detail all the steps that are required so that the gas of fermionic and bosonic
atoms in three spatial dimensions (10)—(12) behaves according to the Hamiltonian (8) in one spatial dimension.
To this end, we show how to reduce the dimensionality from three to one dimensions and how to construct the
staggered lattice for fermions. Afterwards, we describe how to select only those interactions from (12) that
correspond to the gauge invariant interactions in (8).

3.1. One-dimensional staggered geometry

The basic ingredient for realizing a one-dimensional lattice structure with lattice constant a is an optical lattice
with tight radial confinement. Employing a laser frequency which is blue detuned for fermions and red detuned
for bosons allows us to place a mesoscopic bosonic gas on the links between the fermionic lattice sites, as
indicated in the left graph of figure 2. In fact, the potential energy contributions (11) can be split into an axial and
radial part,

VE®) = Vi, () + Vi e 0 e/t (13)

Here, [; , denotes the radial confinement length scale, where we distinguish bosons and fermions by the
superscript s € {b, f}. Owingto tight radial confinement, the three-dimensional system is effectively rendered
one-dimensional and we employ the product form

by (X)) = @, (V) 9y (2) ¢, (%), (14a)
Yo (%) = @5 () 7 (2)Pa (%), (14b)

where ¢ (y) and ¢, (2) are the ground state wave functions in the y and z directions, respectively. We assume that
these states are independent of the magnetic quantum number.

To generate a staggered structure for the fermions, the original optical lattice with period a is superimposed
by an optical superlattice with period 24, as indicated in the right graph of figure 2. Owing to the fact that the
frequency of the second laser is tuned closer to resonance with respect to the fermions than to the bosons, the
second lattice does practically not affect the bosonic degrees of freedom. Disregarding the effect of overall
confinement in the axial direction, the axial part of the potential is then given by

2
Vil o) = Vi, cos? (ﬂ) (15a)
a
‘/”f@ (X) = Vvlfa Sinz (ZLx) + VZf(y C052 (’n—_x) (1517)
’ ’ a ’ a
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The amplitudes V; ,,i = 1,2 are determined by the AC Stark shift of the corresponding magnetic substates c.
The tunneling of bosons between adjacent sites is suppressed by tuning of the laser amplitude. As already noted
in [16], such a construction is spin-independent and, hence, distinct from e.g. [21].

In the following, it is useful to switch to a representation in terms of localized Wannier functions. To this
end, we first consider the fermionic degrees of freedom and focus on the two lowest energy bands. By tuning of
the laser amplitude, we may choose Vi’f ., Such that two Wannier functions w({ up (%) are obtained which are
sufficiently localized in the left (p = L) and right (p = R) minimum of the elementary cell n’ € {0,...,N — 1}
with positive integer N of the optical lattice, respectively. The corresponding expansion of the fermionic field

operator reads

Yo () = Sow] 10 () Yo - (16)
n'sp

We note that the total number of bosonic/fermionic lattice sites is 2N and we will label them by

n € {0,...,2N — 1}. Similarly, we may expand the bosonic field operators, ¢, (x) = >, , wg,,,/p () Gy rp>
where the Wannier functions wfj,n/p (x) are again localized in the two minima of the elementary cell. In fact, the
structure of the superlattice suggests the definition

¢2n’,a = wa,n’b ¢2n’+1,o¢ = ¢(x,n’R> (1751)

d)Zn’,a' = (ba,n’L’ ¢2n’+l,a = ¢a,n’R‘ (17b)

We note that the kinetic energy contributions (10) are suppressed since the Wannier functions that correspond
to the different minima in the optical lattice do not have a sizable overlap (see also section 4).

3.2. Angular momentum conservation
In the previous section, we reviewed how the potential energy (11) can be used to generate the staggered lattice
structure. Moreover, it was noted that the kinetic energy (10) is suppressed due to the localization of the Wannier
functions at the potential minima. To ensure local gauge invariance and create dynamics in the cold atom
system, we have to tune the interaction Hamiltonian (12) such that only a selection of terms contributes. In the
following, we discuss all interaction terms in more detail and explain the connection between the various
scattering lengths and coupling constants g{im sfors € {b, f, bf }. For pedagogical reasons, we discuss the
construction in free space first and take into account the lattice later.

We suppose that the inter- and intra-species interactions of bosons and fermions are local and conserve
angular momentum. Specifically, we consider bosonic degrees of freedom with spin f, = 1 and fermionic degrees
of freedom with spin f; = 1/2. Therefore, the two-particle potentials are given by

VE(xp, X2) = 6(x1 — X)) & 7 Pxs (18)
I

where the total spin can take the values 7, € {0, 2}, F¢ € {0, 1}and Fyy € {1/2, 3/2}[51]. The interaction
strengths g - are related to the s-wave scattering lengths a;, 7 via

2n/i%a, £
= Z2E R (19)
57 u,
Here M, ; denotes the reduced mass of the two scattering partners. In general, the projector Pz for two particles
with individual spins f; and f, on the subspace with total spin F can be written as

Pr :Z|fi)f2;-7:’ M><fi’f2;f) M|, (20)
M

where M € {—F, —F + 1,...,F — 1, F} are the possible magnetic quantum numbers. We may relate the
interaction strengths g, to the constants appearing in the interaction part of the Hamiltonian (12) according to

8oms = 20 & x (fis s o5 BIfy fo3 Fo M) (s fo3 Foo MIfis s £r3 ) @1
F M

Here, (f;; o f,; Olf;> f5 F» M) are the Clebsch—Gordan coefficients for coupling the individual spins f; and f,
to the total spin ;. Specifically, wehave f, = f, = 1for boson—boson interactions (s=b), f; = f, = 1/2 for
fermion—fermion interaction (s=f)and f; = 1/2, f, = 1for boson—fermion interaction (s = bf).

Following along the lines of the previous section, we reduce the three-dimensional system to a setup with
effectively one spatial dimension and expand the field operators in terms of Wannier functions. Using a compact
notation, where n = (ny, ny, n3, n,) denotes the site indicesand p = (o, 3, v, ¢) the magnetic quantum
numbers, we can write for the interaction part of the Hamiltonian:
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Figure 3. The application of a B-field and rf-dressing splits the superlattice for the individual magnetic substates of the bosons and
fermions.

2 o

1 b b 1 + 1 bf b
HI =7 ZUngp, (b:;l,a ¢12,;3 ¢n4,6 ¢n3,’y + E ZUI{&{ djjn,ﬂ wnz,ﬂ wm,é w”sﬁ + E ZUnngf z/)jtl,a ¢l2,ﬁ ¢n4,6 /(/}nsﬂ"
n,pn n,pu

(22)

The coupling constants U}, are determined by the dimensional reduction and the explicit form of the overlap
integrals of the Wannier functions, as given in appendix A.

Based on this interaction Hamiltonian, we see that a plethora of possible interaction terms are generated in
general. In order to realize the Hamiltonian (8), however, we have to guarantee that only specific terms
contribute that respect the gauge symmetry. To this end, we use the fact that the application of an appropriate
magnetic field and radio-frequency (rf) dressing allows for a selection of a small number of relevant interaction
terms, whereas all other contributions become suppressed. We emphasize that this selection is achieved by the
unequal shift of the bosonic and fermionic energy levels, as depicted in figure 3. Most notably, this procedure
results in the bosonic spin exchange with the simultaneous fermion hopping that corresponds to the gauge
invariant interaction term in (8). We note that this selection process does not exclude elastic scattering terms, i.e.
scattering processes without changing the individual spins of the atoms.

All bosonic states are prepared in oy, = {—1, 0} states whereas the fermionic degrees of freedom are
generated in the staggered configuration with oy = 1/2 onevensitesand oy = —1/2 onoddsites. Asa
consequence, interactions including the ay, = 1sector, which are allowed in principle, are suppressed at all
times if initialized accordingly. We further elaborate on this issue in the following sections.

3.3. Bosonic intra-species interactions
In this section, we discuss the intra-species interaction terms of bosons in more detail. Owing to localization in
the optical lattice, only on-site interactions of bosons contribute, i.e. U? = 0 for n = (1, n, n, n) and all others
effectively vanish. Accordingly, the relevant part of the purely bosonic term in the interaction Hamiltonian (22)
is given by

Hlb = l EUﬁgZ djj;,a QZSZ)[} ¢n,(5 n,7y? (23)

25 P

where all entries of 4 = (v, 3, 7y, 6) may take values oy, € {—1, 0}. Again, we note that we disregard terms
including the magnetic substates oy, = 1 which are excluded by the spin conservation if initialized accordingly.
The interaction term (23) reads

1 P Sbo T 282 ¢ S

b b , 2 i

Hy = EZUn(gb,z ¢L,—1 ;L,—l n,—1 n,—1+—3 ¢n,0¢}1,0 1,00 285, ¢l,o L,—l n,—1Pn,0 | (24)
n

where the coupling constants result from (21) and we assumed that the overlap integrals U? are the same for all
terms. For later convenience, we denote the bosonic degrees of freedom on evenssites as ¢,, | = d,, and

®y.0 = ban, whereas we interchange their role on odd sites such that ¢,, , | | = by,p1and ¢,, o = doyi1.In
fact, the bosons b, and d,, can be understood as Schwinger bosons [52] with the identification

Li,=Vb'd, L_,=4db, (25a)
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Figure 4. The selection procedure results in the correlated bosonic spin exchange with a fermionic hopping in the superlattice. Note
that the inverse process is allowed as well.

Loy = %(b;l‘ by — dd,), (25b)

which constitute a representation of the angular momentum algebra [L; ,, Lj ;] = 10y € Ly, » With

Ly, = Ly, £ iL, . The constraint 27 = blb, + dd,isfulfilled because the hopping of bosons between
neighboring sites n — n 4 1issuppressed. The bosonic intra-species interaction Hamiltonian is then given by

Eb,0 — &b,
HIb = %Uﬁz LZZ’n + Ab,O Z(_l)nl‘z,ﬂ) (26)
n n

where we disregarded an irrelevant constant and introduced the abbreviation Ay o = (2 — 1)(g, — &) Ufl’ / 6.

3.4. Fermionic intra-species interaction term

In this section, we discuss the intra-species interaction terms of fermions in more detail. Again, only on-site
interaction terms contribute owing to localization such that U/ = 0 only for n = (1, n, n, n). Takinginto
account the Clebsch—Gordon coefficients, the purely fermionic term in the interaction Hamiltonian (22) can be
reduced according to

Hf = ZUx{gf,owz,l/zwz,_1/2%,71/2%,1/2- (27)
n

In general, this four-fermion interaction term influences the dynamics. However, the contribution can be
written as a density—density interaction

Hlf = Zijltgf,Opn,l/2pn,fl/2 (28)
n
between ay = —1/2and oy = 1/2 particles with density operators p, ., ,, = U /2¥n+1,2. Restricting
ourselves to an initial state | ) with only ay = 1/2 particles on even sites and only oy = —1/2 particles on odd

sites, one immediately finds that H/|¥) = 0. Consequently, this four-fermion interaction does not contribute
to the time evolution due to an appropriate initial-state preparation.

3.5. Inter-species interaction term

Regarding the fermion—boson scattering contributions to the Hamiltonian (22), we have to consider both the
spin exchange process as well as elastic scattering processes. According to the interaction selection process
described above, the spin exchange term that involves the correlated hopping of fermions and bosons is given by

b 1
HY = > ZUﬁfgﬁf (Vo @by 5BomsV2ni 1y + Yhna ¢;n71,;3¢2n71,5w2n—1,7 + h.c.), (29

n'

with u = (o, 5, 7, 6) = (—1/2, 0, 1/2, —1). The first term corresponds to figure 4(a) whereas the second

term is shown in figure 4(b). According to (21), the coupling constant for this specific scattering process is given
by

o N2
8, = 3

We emphasize that the spin exchange term does not change the staggered occupation of fermions such that the
four-fermion term (27) still does not contribute. We anticipate that this applies to the elastic scattering terms as

(uf,3/2 = &if,1/2)- (30

8
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well. Accordingly, the fermions are completely determined by their parity (even/odd sites) and we may therefore
drop the spin label completely, such that

Vo = Von—1720  Vant1 = Yonsr,1/2- (3D

Employing the Schwinger boson representation and taking into account that the overlap integral UY does not
depend on the specific lattice site 1, the spin exchange Hamiltonian can be written as

1 ¥
HIZZ{ = Ele:fgﬁf > WLy nthns1 + hoc). (32)

The elastic scattering processes, on the other hand, are given by

o 1 b b i
Hlej,r = E ZUnngfwzn ;n,ﬁ (bZn,/inn
n',3

1
+ 5 ZUIl;fngw;n ¢;n7 1,8 ¢2n71,31/}2n
n',3

1 +
+ = 2 US g W18, 5 Do an
n',3

1 +
+ 5 zUﬁfngwan¢2n+1,g¢zn+1,g¢2n+b (33)
n',3

where 8 € {—1, 0}. We note that the coupling constants gﬁf still depend on the magnetic substates and are

therefore not identical for the different terms. Moreover, we find that each UY is independent of in (33), and
identical in the first and second line (further denoted by UIIZ{ ) as well as in the third and fourth line (further
denoted by Ufg), see appendix A. For the first term in (33) with g = (—1/2, 8, —1/2, [3), we obtain
812 T 28532 8vr,3/2

Hfi{I = % S U, b3, bautban + % S URS, A donthon, (34)
where we used (21) again. The second term in (33) is the same as the first one upon replacing b,,, — d,,—; and
dry — by,—1. The third term in (33), however, is different owing to p = (1/2, 3, 1/2, ) corresponding to the
different fermionic parity and reads

o Sorin T 2y

" 28172t &30

HIeI,S = 7 ZUsgw;ﬂ+lbéﬂb2n¢2ﬂ+l + % ZUxblézb;anldzTn d2n1/}2n+1‘ (35)
n' n'

The fourth term in (33) is the same as the third one upon replacing b, — dy,,+1and dy,, — b2,41. Employing

the Schwinger boson representation b, b, = ¢ + L,,and did,=¢ — L, ,, the first term (34) can be written as

8ur1/2 — 8if.3,2 812 T O8&32

b b b

HYj, = = S U oL + =R U (36)
n n

Similarly, the third term (35) is given by

o Sbr.3/2 T 82

, t38

b 8ur1/2 T 832 b

I3 = 6 ZUnéwanLleﬂJrlLZ,Zﬂ + 5 fZUnéw£n+l¢2n+b (37)
n' n'

and similar expressions are also obtained for the second and fourth term by replacing L, 5, — —L; 2n51.
Accordingly, we obtain a contribution

HZ{LZ = gbf ZUﬁgw;nJrleni»l(Lz,ZnJrl - LZ,Zn) + gbf ZUﬁ{w;nz/)Zﬂ(Lz,Zn - Lz,anl) (38)
n’ n'

with & = (8512 — &,3/2) /6 that does not appear in the target Hamiltonian (8). The difference of the L,

operators can be expressed in terms of the Gauss’s law operator, L, , — L, ,_1 = G, + by + [(=1)" — 11/2.
Any term proportional to G, exactly vanishes upon acting on physical states so that we can disregard them. In
summary, the elastic scattering terms result in bilinear, parity-dependent fermionic contributions that account to
the potential energy of the fermions:

. Sof1/2 1 28,32

b b b : :

HIC{ = Unjg[(gbf,l/z + &3/ + &yl > Vi1 Pantr + Un{(—3
n/

£+ gbf) > bt (39)

3.6. Cold atom QED Hamiltonian
Summing up all contributions that originate from the kinetic, potential and interaction terms, the cold atom
QED Hamiltonian takes the form
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80 ~ & 1
H o= 202U ST L2, + Do S (1) L + U g ST WL stbusn + hic)

+ S (VI + Vi b, + Vidid,). (40)

The terms in the last line include the potential energy contributions, in particular the energy due to the trapping
of the atoms as well as the bilinear term (39). Again, we emphasize that the fermionic contribution %4 depends
on the parity of n. Introducing the energy difference A¢ according to vi =V - Ar/2and

v, = vl + Ay /2, the fermionic potential contribution is given by
A
Hf = Vi Ydhin — SE D" (4
n n

Owing to total particle number conservation, the first term does not contribute to the dynamics and can thus be
disregarded. The bosonic potential term is treated in a similar fashion. In fact, defining A, ; according to
Vf = Vé’ + (—1)"Ap,1/2and Vf = Vé’ — (=1)"Ap,/2andusing L, ,, = (b'b, — dd,) /2, we obtain

Hy = DNp1 30 (=1"Leyns (42)
n
where we disregarded an irrelevant constant proportional to V¢ which only depends on #. Adding the second
contribution in (40) and defining A, = A, o + A, ;, we obtain
HY 4 Do 3 (= D"Loy = Ay > (= 1)"Loype (43)
Comparison of the cold atom QED Hamiltonian with the target Hamiltonian (8) then shows that we have a term

linearin L, ,. However, this term does not contribute. To see this, we transform the Hamiltonian into the
interaction picture. To this end, we split the cold atom QED Hamiltonian into two parts, H = Hy + Hj, with

HO = Ab Z(fl)n(Lz,n - %ﬂ’i%)y (44[1)

Ho= xg 30 L2, 4 AS (=1, + %Zwiu,nwm + he). (44b)

Here, we introduced the detuning 2A = A, — Ay, the effective boson self-interaction x; and the boson—
fermion interaction x4,

8b,0 — 8,2

XBB = ’TUﬁ, (4561)
«/E(gb 32~ 8172
Xop = ——2 : P2 Y. (45D)

The index n is the same as in (23) and (29) and the overlaps U, are determined in (A11) of the appendix. Upon
acting with the unitary transformation U () = exp(—iHyt), itis straightforward to show that

H} =U*(t)H, U (t). Performing the canonical transformation 1, — (—1i)"t,, we can finally identify H; with
the quantum link Hamiltonian (8)

g s Z L2, + MY (=", — WZ(%M nUn1 — (46)
n as

where we introduced the abbreviations

(47a)

Xss _ &
A oM’

@ = (47b)

aquf(f +1

and time is measured in units of M instead of A. We note that we have to take the limit # — oo in order to
recover the Hamiltonian formulation of lattice QED corresponding to (1).

4. Microscopic parameters

At this point, we are now able to determine the accessible parameters for an experimental implementation of the
Schwinger model via a mixture of bosonic 2*Na and fermionic °Li atoms [30], which is determined by the
parameters pp, Xpp> A and the occupation numbers of the links.

10
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The wave functions that appear in the overlap integrals for X, and xgj are determined by the lattice spacing
a, the lattice depths V'*, V{ and VJ appearing in (15), the difference of scattering lengths that drives the spin-
changing collisions as well as the atomic density on each site. For Na + Na in the f, = 1 manifold, one obtains
apo — a2 = 5a0[53], where ay is the Bohr radius. For the Na + Li collisions, we have a3 — a1/, = 0.9a

[54]. Further, we choose a = 4 um, Vlb = 20Ey, Vlf = 2.76Ep and sz = —1.85Eg with the recoil energy

Ep = ;’—A; (27”)2 Here the number of lattice sites can range from a few sites up to N < 100, where the limit arises
typically due to different experimental constraints. A judicious choice of the orthogonal confinement allows us
to use the same wave function for bosons and fermions in the orthogonal direction ¢, (y) = ¢, (2) with

w /27 = 5 kHz. This potential results in xz /h = 0.05 Hz, x5 /h = 0.58 Hz. We choose the occupation of
the bosonic links to be N /~ 100 atoms per well, such that the estimated time scale for three-body loss is of the
order of several seconds. This means that the Bose—Fermi coupling will be typically of the order of

XgrNp/h =~ 5 Hz. It willlead to a hopping of fermions between neighboring lattice sites if the detuning is not
too large and we therefore choose a detuning of A /h = 10 Hz. Further, the chosen experimental parameters
ensure that the bosonic and fermionic tunneling Jz /h ~ 0.25 Hz, Jz /h = 0.25 Hz (see appendix (A12)) is ten
times slower than the expected gauge field dynamics. So we can indeed neglect the direct tunneling for a
description of the cold atom system as done in the previous derivation.

Given the microscopic parameters of the model, we have in mind applications to strong-field phenomena
such as Schwinger pair production or string breaking, for which we aim to perform benchmark simulations of
the cold atom Hamiltonian (40). To study Schwinger pair production, the electric field E is supposed to exceed
the critical field strength E, = M?/g such that the amplitude E/E, 2> 1.1In the atomic system, this is given by

~

gsz N (¢ + 1)(Ny — Ni) Xpr X5s
M2 N
with N, = (b/b,) and N; = (dd,,). Further, we approximate \/# (£ + 1) ~ Nz/2and N, — N; ~ Np. The
achievable electric field exceeds the critical field strength with E/E, ~ 1.5 for the given experimental
parameters.

This puts the exciting prospect of studying Schwinger pair production using ultracold atoms within reach of
current experimental techniques. For a successful quantum simulation of Schwinger pair production, however,
it does not suffice to implement only the appropriate Hamiltonian. Additionally, we also need to verify (i) that a
proper initial state can be prepared, (ii) that the QED dynamics is indeed accessible to the experimental protocol,
and (iii) that we can read out the relevant quantities experimentally. In fact, all these requirement can be fulfilled
with current experimental techniques for a range of important strong-field phenomena, as further described in
section 6.2.

(43)

5. Functional integral (FI) approach

In this section we outline the FI method to investigate the real-time dynamics of fermions coupled to bosonic
fields and for convenience we perform the following theoretical calculations in natural units. Since identical
fermions cannot occupy the same state, their quantum nature is highly relevant and a consistent quantum theory
of nonequilibrium Schwinger pair production including backreactions is envisaged. Based on the defining FI of
the quantum theory, a systematic expansion can be achieved where the corrections are given in terms of a small
(dimensionless coupling) parameter for strong-field phenomena as reviewed in [34]. At lowest order in this
expansion one recovers a classical-statistical field theory for bosonic fields or the so-called Truncated Wigner
approximation. The inclusion of fermions requires to go beyond lowest order, which we describe below and
apply to the cold atom Hamiltonian (46) in section 6. To study the strong-field regime of QED, the field strength
needs to be of the order of the critical field E, = M?/g. The corresponding cold atom setup is characterized by
E, = gIN, — Nyl/2 ~ M?/g,where N;, N; denote the number of atoms in the Bose—Einstein condensates. For
Ny, Nj ~ O(Z) > 1,theFlapproach of [32, 34, 44, 55, 56] allows us to study the dynamics in this regime.

To make contact with the Truncated Wigner approach, we start from a purely bosonic theory [57]. The
expectation value of an observable O is given by the trace

(0(®) = Tr{Op()}, (49)
where the time-dependent density operator p () in the Schrédinger picture obeys the von-Neumann equation
i0,p(t) = [H, p(1)]. (50)
Its discretized version
p(t+ Ab) = p(t) — iAt[Hp(t) — p(HH] 1)

11
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may be used as a starting point for deriving a FI expression of the time evolution for the density matrix. We
perform a Wigner transformation of the discretized von-Neumann equation (51)

Pw (i3 1) = pyw (@5 to) — 1At [(Hp)w (@35 to) — (pH)w (35 to) 1, (52)

where the transformation only acts on bosonic degrees of freedom in the density matrix and the Hamiltonian.
The Wigner transform, which depends on the center field ¢, is denoted by ( - )1, and we refer to appendix B for
further details. Here, ¢, may carry additional indices that will be suppressed in the following. We emphasize that
there are no operators present anymore as they are replaced by c-number variables. Employing the product
formula for the Wigner transform (B7), the last equation can be written as

putas = [ & = o35 1esp oy — 00— (e — @)
X exp { —iAt[HW (801 + %771) — Hy (4,01 — %771)] } (53)

The product formula of Wigner transforms introduces an additional integration with respect to the difference
field n,. The naming ‘center field’ and ‘difference field” is motivated by the Schwinger—Keldysh formalism as
reviewed in [34], in which the fields on the forward and backward branch of the closed-time path correspond to
o* = ¢ £ n/2.Iterating this expression, we obtain the FI representation

& &
P (@ns tn) = H f sDkl_[ f nkpw(sow to)exp{an(sokl o) — Mo}, — %)}

X eXP{_iAtZ[HW (Wk + %771() — Hy (@k - %m)]} (54)
k=1

with ty = to + NAt. The exponent in the last expression can be written as

N % >k
, Y= ¢ . -
NEIE lAtZ[WIM Hiv (01 + %nk)] - lAtlenkkA—tkl — Hiv (o - %nk)],
k=1
(55)

which is a discretized version of the Schwinger—Keldysh action. Expanding the Hamiltonian up to linear order in
the difference field 7,

OH, OH n
oy, 2 dp; 2

Hy (‘Pk + %m) = Hw (g *

we obtain
NL e &
pw (ons ) =[] f S0"1_[ f nkﬂw(%, to) exp an(wl o0 — (G — op)
k=0 ™ k=1

OHw () OHw (¢))
X exps —iAt M + m | ¢ (57)
{ kzzl[ ot ‘ 9%} ¢

Within this approximation, the difference field 1, can be integrated out as it appears only linearly in the
exponent. This gives

Pw (Pns IN) = H de(pk Pw (Po3 to)’ﬁ 6(f (P> Pr_1)- (58)
=1
The arguments of the complex Dirac-delta functions
f@p Peo) = ror = o — At% (59)
Pk
impose the discrete time evolution equation [57]
(P P 3Hw(80k)' (60)

At 8(,0:

In fact, this equation can be solved implicitly, such that ¢, = g (¢;_,). To actually integrate out o, for
k € {0,...,N — 1}, wehave to change the argument of the delta function, such that

12
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off |

O(f (P 1) =
[ ey 3o @7:

0(pr — §(@_)- (61)

A similar derivation can be performed for real scalar field theories [58]. The Jacobi determinant takes the form

E3
M = |1 4+ iAKK]| = 1 + O(AL?), (62)
(e ¢p)
where we used
det(1 4+ eK) =1+ e TrK + O(€?) (63)
with
O0*Hy (@) O?Hyw (o)
V2] R ln
K — fk Pk fk SOk (64)
_ 0 HW(SOk) _ 0 HW(SDk)
0 Oy 5@:5%

and e being a small number. This shows that the Jacobi determinant does not contribute [59], since it affects the
dynamics only at order O(At?). The Wigner function py, (¢y; ty) for arbitrary times fis obtained by sampling
over initial conditions ¢, which are then evolved by (60). Expectation values of bosonic observables O are then
given by

(0w) f ¥y (s 1) Ow (). (65)

5.1.Interacting boson—fermion theory
We now include the quantum corrections induced by the coupling to the fermions. Here, Wigner transforms are
only calculated with respect to the bosonic variables whereas the fermionic operators and their appropriate time
ordering still has to be taken into account. For the sake of simplicity, we denote the fermionic fields by ¢) and
emphasize that they carry additional indices which will be suppressed in the following. Furthermore, we assume
that the Hamiltonian H = Hp + Hp can be separated into a purely bosonic part Hg and a quadratic fermionic
part, Hp = ' hee), where hyis a matrix that may contain bosonic degrees of freedom.

The Wigner transform of the discretized time evolution equation (51) for a single time step is now given by

pw (@, @i 1) —f Lo f &l exp {1 (gy — ) — Mm% — ¥}
X exp { —iAtHw (w, ot gm) }pw(w, o> to)exp {iAtHw (4 00— 3m) } (66)

where we emphasize again that the Wigner transform Hyy (¢, ¢) depends on both fermionic operators 1) and
c-number variables . Iterating this expression, we obtain again a FI representation of the time evolution of the
Wigner function

& d N
Py (U5 s tN) = H f Sk H f ﬂeXP{ZnZ‘(wH — ) — mg_ — wﬁ)}
k=1

N
. 1 = . 1
x T exp {1At > Hy (1/), O + Enk)}Pw (¥, @ to) T exp {1Atkz:Hw (1/), wr — Enk)}’ (67)
- =1
where we introduced the time ordering operator Tand the anti-time ordering operator T'. Based on the
assumption that H = Hg + Hp, we may also separate its Wigner transform into a purely bosonic and a
fermionic contribution

Hw (¥, ¢,) = Hpw (@) + Hrw (¢, @)). (68)

Furthermore, we assume that the initial density matrix factorizes into a purely bosonic part p, as well as a purely
fermionic contribution p,. Accordingly, the Wigner transform at initial times only affects the bosonic part, such
that

pw(¢1 o> to) = PBw(<P0§ tO)pF (Ys; to) (69)

also factorizes. However, the factorization property of the density matrix may be lost during the time evolution.
We integrate out the fermions to get the time evolution of bosonic observables Op. Denoting the trace over
fermionic operators by Tz, we obtain

13



I0OP Publishing NewJ. Phys. 19 (2017) 023030 V Kasper etal

d? d?
Trepy (1, s tN) = H f P H f nkpBw(Sﬁoy to)

N
X exp {Zﬁt(¢k1 — o) — mlgr_| — <P7:)*iAtZ[HBW (‘Pk + %nk) — Hpw (@k - %Wk)]}
=1

N N
X TTF[T exp{—iAt > Hpw (7% Y + %Uk)}ﬂp (¥, to) T exp {iAtZHFW (1/)) Yr — %nk)H (70)
k=1 k=1

Owing to the fact that the purely bosonic part is the same as in (54), we focus on the fermionic contributions in
the following. Since Hpis taken to be quadratic in the fermionic operators, it is convenient to introduce the
abbreviation

Uhpw ()1 = Hpw (1, ). (71)

Here, hgy () is a matrix that only depends on bosonic variables but not on fermionic operators. Further, we
introduce @ki as the linear combination of center field ¢, and difference field 7,,

1
@ki = O M (72)

and we assume that the initial fermionic density matrix can be written as
pr = Z texp [ hew () V), (73)

where Z is an appropriate normalization. By utilizing the identity [60]
Tre[e?™M¥ ... e¥™M¥] = det(1 + eM ... eM (74)

with matrices My for k = 1, ..., n, we may explicitly perform the fermionic trace in (70). Introducing the
evolution matrix

Stm(p) = eTIAhawla) eIt i (2, (75)
where Sy, (¢) depends on the string of fields ¢, ..., ¢, for k > m, we obtain
Tre[T exp{...} p (@5 t)) T exp{...}] = Z ' exp Trlog[1 + Sy, (¢Het@S{ (o) (76)
for the last line of (70). For later convenience, we also define the fermionic propagator

= D(t + kA) = S;1(9)(1 + e @) 15] (), 77)

whose time evolution at order O(At) is governed by
Diy1 — Dy = iAt[Dy, hpw (0 )] (78)

The components of Dy can be identified with the equal-time correlation function (¢}, 1,) as will be shown below.
This discrete equation can be solved via a mode expansion of the operator v, as illustrated in [34]. Knowing the
mode functions then allows one to compute fermionic correlation functions.

The expansion of the Tr log in (76) up to linear order in the difference field 7, then yields

& &
Trepy (¥, @y In) = H f Pk H f nkpBw(%, to)eXp{an(wk L= o0 — MG, — @f)}
k=1

o exp{—lAtZ[aHBW((pk) n Tr[ath(@k) Dk)]ﬁk}

k=1 Iy Iy
OHgw () [ath«ok) ] .
X exp{ —iAt + Tr Dy | 5 ¢-
{ kzl[ " 0% ¢

Since the difference field 7, appears only linearly in the exponent, we may integrate it out again. As compared to
the purely bosonic case, see (60), the resulting complex Dirac-delta function now impose the discrete time
evolution equation [61]

(79)

il S OHyw (¢y) + Tr[ahFW((Pk) k} (80)

At g} g}

which is implicitly solved via ¢, = g(¢,_ ). Asin the purely bosonic case, the Jacobi determinant does not
contribute at leading order. Accordingly, the Wigner function p,,, (¢,; ty) is obtained by sampling over initial
conditions and subsequent time evolution of ¢ and D according to (80) and (78), respectively.
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Finally, to calculate the expectation value of bilinear fermionic observables Or = ' A1) with A beinga
matrix, we consider
2

fN Tre (WA pyy (0, oy ) ). 81)

, d
(0r(0) = Tr{viay p)} = [

While the bosonic contributions are identical to (70), the fermionic trace now takes the form

N N
Trp [Wmﬁ T exp{—iAt > Hpw (w) e+ %m)}ﬂp (s 1) T exp {iAt > Hpw (% Yr — %771()}] (82)
k=1

k=1 —
Utilizing the identity
Tre[¢fAY e¥™MY V™M) = det(1 + eM ... eM)Tr{(1 + e Mr ... e M)-14}, (83)

we may again perform the fermionic trace explicitly. Expanding the exponent up to linear order in the response
field n, while setting it to zero otherwise, we finally obtain

N dz(pk N
(Or ) = TT [ “Lpp s 0 ] 6o — 2oy ) Tr(DyA). (84)
k=0 Q k=1

Accordingly, the discrete time evolution of (Of) is determined by
(Op(ter1)) — (Or(t)) = iAt Tr{[Dy, hpw (0 D]A}. (85)

By explicitly introducing spatial indices and choosing A, = S, Onn,» We recover the evolution equation of Dy
as given in (78). This shows that D can indeed be identified with the equal-time correlation function (¢}, 1,).

5.2. Equations of motion for the cold atom system

To derive the equations of motion for the cold atom system, we apply the method from the previous section to
the Hamiltonian (46). To this end, we rewrite Hqy in terms of the Schwinger boson operators b,, and d,,. Upon
employing symmetric operator ordering and skipping an irrelevant constant, the Wigner transform of the
Hamiltonian is given by [62]

i " b¥d, b1 — hc), 86
P L i —he), (9

where b,, and d,, are now c-numbers, but the 1), and z/JZ are still fermionic operators. In the following, time is
treated as a continuous variable. Accordingly, all equations correspond to their discrete versions up to order
O(At?). The equations of motion for the fermionic correlator D(f) are given by

10Dy u (t) = hpw,mk () Dign () — Do i (8) Bpww ke (£), (87)

where the fermionic matrix hg(t) reads

2
a
Harw = %Z(lbnl‘1 + 1Y) + MY (=)™, —

i i
hew, = ———————— S L Y S
e 22 + 1) N R

The fermionic two-point function D,,,, = <1/1,:1 U,y = %(6,,1,1 — E,,,) can be expressed in terms of the statistical

b dmOmi1n + M(=1)"8 + (88)

two-point function E,,, = ([{, Ui ). Accordingly, the equations of motion for the bosonic degrees of freedom
are given by

id,
—El +1,m
das € (€ + 1)

iby,
——F——=hnt1
das (€ + 1)
We specify initial conditions to solve the system of time evolution equations (87) and (89). The method outlined

above allows us to use Gaussian initial states for the fermions. In the following, we focus on the vacuum of the
Hamiltonian

2
i0,b, = %b:bnbn n (89a)

2
i0,d, = %d,ﬁ‘d”dﬂ - (89b)

Hyo = —jzwlwnﬂ — he) + MY (1), (90)
S n n

Since Hy o is quadratic, the ground state and the dispersion relation can be determined analytically, see
appendix C. Given an optical lattice with N elementary cells, i.e. 2N lattice sites, the dispersion relation is given
by two bands +w;, with
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1 .
we= M+ 7}, m= —sm(%q), €2Y)

as

with g € {0,...,N — 1}. The corresponding mode function expansion of the fermionic field operator reads

1
2N ;e N 2wy (wg — ™) “ N 2wq (wy + )

and the momentum space creation/annihilation operators are defined with respect to the fully filled lower band
[vac) according to ag|vac) = cylvac) = 0.The bosonic samples are prepared in an excited eigenstate of

Un

o[ M4+ (D" —m) M= (=)' + 7) T] o

2
a
Hyo = 858 . 5SSO 12, (93)
n

determined by the number of bosonic atoms on each site 2¢ = b, b, + d,' d, and the eigenvalue of the operator
L,,= (b'b, — d;d,) /2. The initial conditions for the bosons need to be chosen such that Gauss’s law is

fulfilled. Since the bosonic degrees of freedom are highly occupied, we approximate the initial Wigner function
by

Pw (<Po) = H 6(1711 - BO,n)‘S(dn - DO,n)- (94)
n
In fact, the corrections to the exact Wigner function are O(1/¢) [57]. The explicit values of 3, ,, and D, , are
specified in the next section. To initiate the dynamic evolution, the system is then quenched to an interacting
field theory governed by the Hamiltonian (46).

6. Schwinger pair production and string breaking

In the following we discuss two fundamental phenomena of high-energy physics that are present in the
Schwinger model and whose dynamics might be addressed in the cold atom framework presented. First we
discuss how the cold atom system approaches the continuum results of Schwinger pair production and then we
concentrate on parameter sets that characterize given experimental systems.

6.1. Theoretical results

Schwinger pair production. In quantum electrodynamics the presence of a sufficiently strong electric field results
in the spontaneous breakdown of the vacuum by the emission of charged particle—antiparticle pairs (Schwinger
effect) [63—65]. This fundamental process has not been experimentally observed yet due to the large required
field strength of the order of the critical electric field E, = M?2/g. The observation of this effect in the cold atom
framework, however, seems to be feasible with current technology as discussed in section 4.

To study the Schwinger effect in the cold atom framework, we consider a one-dimensional lattice with 2N
lattice sites, periodic boundary conditions and finite spin magnitude # = (N, + N;) /2. Aninitially constant
electric field E/E. = 1in QED then corresponds to an initial configuration with a bosonic species imbalance
[1(0)| = |N, — Nyl = 2M?/g%. We first solve the equations of motion in the limit # — oo for g/M = 0.1,
asM =0.005 and N = 512. We checked that our results are insensitive to changes of both the infrared and the
ultraviolet cutoff.

In fact, the information of the fermionic sector is encoded in the correlation function F,,,,,. Even though the
concept of a particle number is not uniquely defined in an interacting theory [66], it is useful to define a quasi-
particle distribution n(k) from F,,,,, [32, 34, 671, see also appendix C. We display the time-evolution of the total
particle number N = 3, n(k) in figure 5(a). The production rate at early times, when the backreaction of
produced particles does not yet substantially influence the dynamics, coincides with the analytically known
result[32,67]

) 2
N = M'E exp(—ﬂ'%). (95)

27E,

Atlater times, the backreaction of particles becomes important and leads to the expected deviations from the
analytic curve. We find phases in which particle production terminates and plateaus are formed [32, 34].

In the cold atom setup no fundamental particles are produced since the number of atoms is fixed. However,
the physics of pair production is still encoded in the correlation function F,,,,, since the staggered structure of the
cold atom setup results in the representation of fermions on even/odd sites as particles/antiparticles.
Accordingly, the hopping of fermionic atoms between neighboring sites which generates correlations F,,,,, can be
interpreted as pair production. As the cold atom setup shows a truncation error of O(6p/¢) compared to QED it
is interesting to investigate this error as a function of Z. In figure 5(a), we demonstrate the convergence of the
cold atom behavior towards the QED result upon increasing . For the chosen parameters and £ = 2500, we
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Figure 5. Pair production: (a) time-evolution of the total particle number A for different values of £ with fixed g/M = 0.1,
agsM = 0.005and N = 512. The gray line corresponds to the analytic result (95). We observe convergence towards the QED result
upon increasing the value of £. (b) Time-evolution of the electric field E for different values of # with fixed g/M = 0.1, asM = 0.005
and N = 512. The backreaction of the created particles results in plasma oscillations. We again observe convergence towards the QED
result upon increasing the value of £.
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Figure 6. Pair production: time-evolution of the electric field E for different values of Nand fixed g/M = 0.1, agM = 0.005 and
¢ = 10°.

still observe sizable quantitative deviations from the QED result whereas this discrepancy further decreases for
increasing values of 7.

Besides studying fermionic observables based on F,,,,,, it is also instructive to evaluate the bosonic species
imbalance I (t) = N,(t) — N;(¢) which is related to the QED electric field according to E(¢) = gl (¢) /2. In
figure 5(b), we display the time-evolution of the electric field. Starting from QED (¢ — ©0), we observe the
expected behavior according to which the production and subsequent acceleration of particle—antiparticle pairs
results in plasma oscillations [32, 34, 68]. Accordingly, the electric field decreases as the particle number
increases and particle creation effectively terminates once the field drops below a certain level, corresponding to
the plateaus in the particle number in figure 5(a).

In the cold atom setup, the physics of plasma oscillations is observed as well. The fermionic hopping reduces
the initial bosonic species imbalance I (0) = 2M?/g? > 0 until it changes sign and reaches a local minimum
I (tpin) < 0. Subsequently, the species imbalance increases again, changes sign and reaches a local maximum
and so forth. As for the particle number, we observe that the cold atom behavior converges towards the QED
results upon increasing the value of 7.

The results in figure 5 are all based on system sizes of N = 512 for which infrared artifacts are suppressed. In
the following we study the influence of the system size and display the time-evolution of the bosonic species
imbalance I(¢) for different values of Nand fixed # = 10 in figure 6. Whereas the behavior remains the same
qualitatively, the actual quantitative behavior might substantially change upon decreasing the value of N. For N
being too small, we observe oscillations on top of the plasma oscillations which can be attributed to the finite
momentum resolution. Moreover, even though a reasonable agreement between QED and the cold atom setup
is found for the first oscillation period for N = 512, we still observe sizable deviation at later times.

String breaking. The physics of confinement in the theory of QCD manifests itself by the formation of a string
between two external, static quarks. This confining string can break in theories with dynamical fermions by the
production of charged particle—antiparticle pairs which result in a screening of the static sources [69-74]. QED
in one spatial dimension shares important aspect of dynamical string breaking and, therefore, serves as a toy
model for addressing related questions [33, 38, 40,41, 44].
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Figure 7. String breaking: electric field E at different times #, - M = 0.0 (black), t, - M = 8.4 (blue)and t; - M = 24.9 (red) for
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Figure 8. String breaking: time evolution of the electric field E in the center of the string for different values of # with fixed
g/M = 1.0, asM = 0.1, N = 1024. The distance between the charges is d /as = 287. The zero-crossing of the electric field is
attributed to the phenomenon of string breaking.

To study dynamical string breaking in QED in one spatial dimension we prepare two static charges +Q
located at +-d /2 on the spatial lattice with 2N lattice sites. The corresponding electric field between the charges
is given by Ey = Q while it vanishes outside. In the cold atom setup, this corresponds to a bosonic species
imbalance of I (0) = 2Q/g inside the string [x| < d/2 whereas it vanishes outside of it.

We first make contact to the corresponding QED literature [33, 44] by considering the limit # — oo and
choosing g/M = 1,asM =0.1 and N = 1024. To this end, we study the time-evolution of the electric field E,,
for d/as = 287 and display different instances of time in figure 7. Starting from the initial field configuration,
the field energy is transferred to the fermionic sector by particle—antiparticle production such that the amplitude
decreases. The dynamics is such that the opposite charges are produced locally on top of each other and are then
accelerated by the electric field. Depending on the value of d, the initial string may or may not contain enough
energy to produce the required charges +Q to screen the external charges. In the latter case the string does not
break completely.

In figure 8 we display the electric field in the center of the string, and we choose d such that the produced
amount of charge exactly screens the external charges, which is attributed to the phenomenon of string breaking.
Considering the cold atom setup, the finite value of £ then again introduces deviations from the QED behavior.
Most notably, we observe that the breaking of the string happens already for smaller distances dcy < dqgp for
the same parameters g/M = 1,asM =0.1 and N = 1024. As expected, we observe convergence towards the
QED results upon increasing the value of £.

Finally, we consider fermionic observables which are defined in terms of the correlation function F,,,,,.
Unlike in the Schwinger mechanism, however, we may observe charge separation directly owing to the spatially
inhomogeneous configuration. Accordingly, we focus on the expectation value of the charge density. More
specifically, we consider the average charge density on two neighboring lattice sites in order to coarse grain the
staggered structure, which is an artifact of the chosen fermion discretization

_ 1
4y = Don + Doy = —E(Fzmm + Fons120+1)- (96)

In figure 9 we display the time evolution of the charge density g, . As described previously, the dynamical charges
are produced on top of each other such that the total charge density vanishes initially.
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Figure 9. String breaking: time-evolution of the charge density g, for fixed # — oo, g/M = 1.0, asM = 0.1and N = 1024. The
distance between the charges is d/as = 287. The charges are produced on top of each other and are then separated by the field.
Positive charges are accelerated towards — Q whereas the negative charges are accelerated towards +Q.

The dynamical charges are then separated by the existing field such that positive charges are accelerated
towards — Q and negative charge towards + Q. As the dynamical charges cannot be considered as hardcore
particles, the charge density spreads beyond the static charges resulting in the outwards directed parts of the
charge density. Accordingly, the external charges are gradually screened and finally result in the breaking of the
string. At asymptotic times, the external charges are then supposed to become screened by an exponential cloud
of dynamical fermions [24, 33, 44, 75].

6.2. Experimental protocol

After discussing strong-field QED in the continuum limit, we now present an experimental protocol of
initialization, evolution and detection that allows us to observe QED with cold atoms. It is important to note that
it does not suffice to only provide the required symmetry of the Hamiltonian in order to quantum simulate a
gauge theory but, equally important, also the initial conditions have to fulfill Gauss’s law as accurately as
possible. The second requirement can only be guaranteed to a certain degree, however, the presented
preparation scheme is consistent with the initial conditions chosen for the theoretical description.

According to section 3.4, the fermions can be prepared in the lowest band via a subsequential adiabatic ramp
of Vz{ , and then Vl{( o If the wavelength of this lattice is well chosen, the bosonic links with Ny atoms are also
directly prepared at the intersection between the fermionic sites. In particular, the chosen wavelength is
supposed to be red detuned for °Li and blue detuned for **Na. To apply an initial electric field according to (94),
the bosons need to be prepared in a staggered structure of alternating imbalance. This can be achieved by
controlling the imbalance with a linear coupling between the two bosonic states, e.g., via rf coupling or two
photon microwave coupling. The detuning of the linear coupling for every second site is controlled by utilizing a
species selective standing light wave with twice the lattice period for the bosons. Properly chosen, one can
implement a 7 pulse for every second site that leads to the required ‘staggered” imbalance of the bosons. The
subsequent dynamics of the system is initiated with a quench of the mass term from being far off-resonant.

We start our benchmarking with the parameters presented in section 4, which correspond to g/M = 2.6,
asM = 0.05and N = 100. For these initial conditions we can benchmark a possible experimental realization via
the FI approach. This allows us to investigate the role of the experimentally relevant parameters on the physics of
the Schwinger effect, especially the spin magnitude # = Ny /2 and the coupling strength g. To check the
convergence towards the lattice QED result for given parameters we also vary the spin magnitude,
¢ € {10, 20, oo}. Since the experimental parameters allow for the exploration of the strong coupling regime
g/M > 1, the range of validity of the theoretical treatment has to be further investigated [76]. We expect,
however, that the experiment shows the same qualitative behavior as shown in figure 10.

In figure 10(a) we display the time evolution of particle number per lattice site, where we use again the
adiabatic definition from appendix C. First, we observe that particle production happens initially on time scales
of the order of x5, Np, which is short compared to the limiting particle losses, and thus accessible in the
experiment. As to be expected from y ;. N5 > A we also observe initial oscillations, which are smeared on times
t > h/A. The particle number per lattice site then reaches a plateau with A/(t) /N =~ 10~3. For the given
parameters, we find convergence towards the QED results already for # = 20 which, as compared to the ideal-
typical parameters from the previous section, can be traced back to the larger value of the coupling ¢/M = 2.6.
In general it turns out that the required value of # is inversely proportional to g/M to obtain convergence
towards the QED result, see also the simulations of dynamical string breaking in figure 8. Owing to the fact that
realistic values of the spin magnitude are of the order of # = (0(100), we can expect genuine QED behavior for
the proposed experimental setup. The fluctuations in the number of bosons, which is expected to be of the order
of a few percent, are not expected to substantially alter the reported behavior on the time scales considered. We
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Figure 11. Coupling dependence in >’Na—°Li setup: time-evolution of the particle number for different ¢/M = 0.4, 1.0, 2.6 and
fixed agM = 0.05, # = 100, N = 100. We adapt the initial species imbalance to provide for a critical initial field E. in each case.

also display the electric field E (#) = gI (¢) /2 as determined by the species imbalance I (t) = N, (t) — N;(¢)in
figure 10(b). The production of particles results in a decrease of the species imbalance, which quickly drops
below the critical value so that particle production terminates.

Conceptually the momentum distribution of the produced particles can be read out precisely via band
mapping [30], however, this is very challenging for the given parameters as one can deduce from figure 10.
Nevertheless, the underlying physics of particle production can be already accessed from the integrated number
of produced particles. According to figure 10, around 0.2 particles have to be detected on average for a lattice
with N = 100 sites. Current experimental setups allow realizing ~230 copies of the cold atom QED system by
employing an array of one-dimensional traps. Thus one expects integrated (O(10) particles which can be
detected with fluorescence in a subsequent magneto-optical trap for which single particle resolution is well
established [28]. While the detection of the produced particles is very challenging, the bosonic species
imbalance, i.e. the electric field, changes significantly. Thus, the Schwinger effect in a cold atomic setup can also
be observed by measuring the integrated boson imbalance via standard absorption imaging techniques.

The coupling strength g/ M is another experimentally relevant parameter of importance. Accordingly, we
study the dependence of the particle number on choosing slightly different couplings g¢/M € {0.4, 1.0, 2.6} for
fixed parameters agM = 0.05, N = 100and £ — oo in figure 11. We note that we have to adapt the initial
species imbalance I (0) = 2M?2/g¢? in order to provide an initial critical field E, in each case. Most notably, the
simulations indicate that the first plateau in the particle number is a stable signature for the non-trivial interplay
of the electric field and the produced fermions. We find, however, that the number of produced particles at the
first plateau is inversely proportional to the ratio ¢/ M. As expected, smaller couplings ¢/ M result in a slowdown
of dynamics such that the first plateau is reached at later times.

7. Conclusion

This work is meant as a guide towards a first large-scale quantum simulation of a lattice gauge theory with
dynamical gauge fields. For that purpose, we concentrate on the comparatively simple yet highly nontrivial
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example of QED in (1+1) space—time dimensions and provide strong evidence that present-day experimental
resources and protocols are sufficient to observe the dynamical phenomena of Schwinger pair production and
string breaking in the laboratory using ultracold atoms.

Our results point out that experimental realizations using coherent many-body states residing on the links of
an optical lattice can be highly efficient for quantum simulations of such high-energy particle physics
phenomena. This represents a paradigmatic change in view of the large number of studies in the literature that
focus on a small number of atoms per link. To substantiate our findings, we exploit the long-term experience
that has been gained with the engineering and manipulation of related setups of fermions interacting with
coherent samples of bosonic atoms.

For the example of a Bose—Fermi mixture of >’Na and °Li atoms, which is characterized by a plethora of
potentially gauge symmetry breaking interactions, we apply external potentials and fields such that one ends up
with a lattice Hamiltonian with local gauge invariance. In this way, the microscopic parameters describing the
bosonic and fermionic atom degrees of freedom are connected with the parameters describing the gauge field
theory.

We use the experimentally available parameter range of the cold atom system in benchmark calculations and
convergence towards the full QED results is observed. The very detailed comparisons of the real-time dynamics
of the atomic system in the large boson number regime are possible using powerful FI techniques, which
complement exact diagonalization or tensor network methods that are applicable in the small boson number
regime.

A future experimental implementation of gauge symmetries in a flexible cold atom setup can explore new
parameter ranges and phenomena, even beyond what is realized by nature so far. While the gauge coupling of
QED is weak, with i, > 1/137 in nature’s three spatial dimensions, studies at stronger couplings in various
dimensions would be extremely interesting. No conventional computational technique has so far been able to
predict the real-time dynamics of QED or QCD for couplings of order one—despite the fact that this is a crucial
missing link in our understanding of the thermalization process of QCD as explored in relativistic heavy-ion
collision experiments. The experimental setup discussed in this work may provide already access to answering
important aspects of longstanding open questions.
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Appendix A. Overlap integrals

In this appendix we determine the overlap integrals which appear in the main text. To this end, we consider an
optical lattice with lattice constant a and tight radial confinement so that we assume that the radial and
longitudinal directions decouple. Further, the bosonic and fermionic atoms are supposed to be in the ground
state with respect to the radial direction. Assuming a harmonic potential, the ground state wave functions
introduced in (14) are given by

y

¢.(y) = (mal )V tet(es)), (A1)

as| = U . (A2)
Msws,J_

The expressions for , (z) follow from replacing y by z. Here, we assumed that the ground state wave functions
are independent of the magnetic quantum number c.
In the longitudinal direction, the optical lattice potential is determined by

VHb (x) = VP cos?(2kx), (A3a)

with the harmonic oscillator length scale

Vi (x) = W sin?(2kx) + V/ cos?(kx), (A3b)
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with k = 7/aand V{ > 0. Thelocations of the minima of the bosonic potential are at

2 1
Xpn = "t a. (Ada)
4
In the vicinity of the potential minimum x;, ,, we may expand the potential in a Taylor series to quadratic order
VP (x) =~ 4k2V (x — xp0)2. (A5)

The minima in the fermionic potential are determined by
X = ga. (A6)

For the fermionic atoms, there are two different types of local minima and we need to expand the optical
potential in a Taylor series to quadratic order around both of them. For evenssites, such as x; o = 0, and odd sites

. 1 .
sites, such as xf,1 = S, We obtain

VIl = V] + @V = VDR = %707, (A7a)
VI ), ~ @V + VDR (e — xp,02 (A7D)
The quadratic terms in the potential expansions determine the harmonic oscillator frequencies
1
T My = 42V, (A8a)
1
EMfw},”,L = @V — vHi, (A8D)
1
My e = @V + vhHi?. (A80)

Werequire 4V — V{ > 0such that the oscillator frequencies are real. Note again that we have two different
frequencies for the fermions corresponding to even/odd sites whereas there is only a single bosonic frequency.
The corresponding oscillator length scales are then given by

ap,| = U , (A9a)
Mywy,|
7
a = [—, A9b
R YR (o0

with p = L, R. The corresponding Wannier functions are

X—Xp,n 2
wh (x) = (miu)*‘/ 4e’%( )| ) , (A10a)

X—=Xf.n 2
wl (x) = (maf )~ 4e*%(w) , (A10b)

where we assumed again that the wave functions are independent of the magnetic quantum number, i.e.
b b
w, (x) = w, ,(x)and wl(x) = Win (x).
Upon performing the dimensional reduction and change of basis to Wannier function, the following overlap
integrals appear in the interaction terms:

Us= [ ay 1oyl [zl @1 [ dx [wh coow, o Twh, w0 (Al1a)
Ul = [y le ot [ dzlep@1t [ dx ] omwl, @Fw] o], ) (A11b)
U = [ ay 1e,00er 0P [ deliy @ P [ d D] owly T, o, o). (Al10)

These are Gaussian integrals which can be determined analytically, see (A1) and (A10). In section 4 we further
use the bosonic and fermionic tunnel elements

2 2

o= [ds wf(x)(—%% + vh(x))w,i’ﬂ(x), (A12a)
b
2 2

Jo = [dxw] (x)(—%% + v (x)]w,i’ﬂ(x). (A12b)
f
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Appendix B. Coherent states and Wigner transform

In this appendix we summarize the main definitions that are used in section 5 (see also [77]). The coherent state
of a single bosonic mode

) = e Heesd o) = D)0, ®v

is defined as the right eigenstate of the bosonic annihilation operator, ¢|p) = |¢), where we introduced the
displacement operator

D(p) = exp(p¢’ — ©*). (B2)
The identity operator reads
dRep dIm d?
1= /f#lwﬂwl Ef—ﬂs@ﬂﬂ- (B3)
T T
The complex Dirac-delta function
6(p; — ) = 6(Re; — Rey,) 6 (Imp, — Im ¢,) (B4)
has the integral representation
2
fd_vew*m* — 760\, (BS)
b

The Wigner transform of an operator O (¢, ¢') is given by
dZ)\ - AoF— o X
Ow(p) = [SETr{ODI () e ¥, (B6)
™

For O = AB with two observables A (¢, ¢) and B(¢, ¢") the Wigner transforms can be expressed as

2 2

(AB)w () = f A f Men(w—M’*—n*w—A)AW()\)BW (sO _ %,7)
T T

_ f dz?/\ f ?eww*—n*wdmw(@ + %n)BW(/\). (B7)

Appendix C. Particle number distribution
In this appendix we define and determine the particle number distribution #n(g) in terms of the correlation

function E,,, = (vac|[¢,, Y 1|vac). To this end, we consider the fermionic part of the Kogut-Susskind
Hamiltonian (1)

+ M (= 1)), (C1)

H= Zl\ili(d]lerlUrTwn - wjl UnwnJrl)
n=0 2&5

We may diagonalize the Hamiltonian by treating the link variables U,, as c-number background for the fermions,
asitis also done in the FI approach. To this end, we define the Fourier transformation according to

1 N1 imqn ~
Yy = — en Uy (C2a)
V2N 5
~ 1 2N-1 imgn
U= —= D e N (C20b)

N2N ;5

We note that the system is still translation invariant over two lattice sites if we study Schwinger pair production,
ie.U, = U,y withl € {0,...,N — 1}. Denoting the even links by Uyyen, = U, and the odd links by
Usdd = Uspy 1, we have

Uy=Us + (—=1)"Up (C3)
with Uy = (Upen + Upgd) /2 and Ug = (Upyen — Usad) /2. The Hamiltonian can then be written in matrix
notation according to

Nl . M, {0
H= (17)1 {N N) * Y (C4)
q=0 R My —my Vg N
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with
o i ook M %
m=—\e vUy —evly) = Ty (C5a)
26!3
M, =M+ zi(e—‘%’U;‘ + e Up). (C5b)
as

Fermions without a gauge field correspond to U,, = 1 leading to Uy = 1and Ug = 0. The eigenvalues of this
Hamiltonian are given by w.. , = *w, with

1 im i 2
wy = JMZ + = | Uen — e VU ‘ . (C6)
4ag
The corresponding normalized eigenvectors are
1 M
uf = —( 1 ), (C7a)
2wy (wg — mp) \Wa — T
1 - M
uy = —( I ) (C7b)
V2w (wg + ) \Wa +

In fact, every g-mode is diagonalized by a unitary transformation matrix U; = (uq+ , g ). This defines quasi-

particle creation/annihilation operators
ag J
( T) =U] f’b‘f (C8)
13
q 7/’q+N

with respect to the instantaneous vacuum state |(2), fulfilling a,|Q) = ¢,|©2) = 0. The Hamiltonian is then given
by
N-1
H= qu(a;aq + c;cq — 1. (C9)
q=0

We define the quasi-particle distribution function n(g) as the expectation value of the instantaneous number
operator

n(q) = <V8C|6l;6lq + c,;' cqlvac), (C10)
where the asymptotic ground state |vac) is determined by the Hamiltonian with U,, = 1. The expectation value of
the Hamiltonian is

N-1
& = (vac|H|vac) = qu[n(q) —1]. (C11)
q=0

The two contributions of n1(g) are found by employing the Bogoliubov transformation (C8) such that

. M, M
(vacla, aglvac) = 1 <Vac|1/1f11/1qlvac) + _q<VaC|'ll)g'll)q+N|VaC>
2w4(wg — ™) 2w,
My t Wq — T ¥
+ —(Vac|¢q+qulvac> + (vaclwq+Nz/Jq+N|vac>, (C12)
2wy Wy
and
(vac|c] c|vac) = %@add) Yilvac) — —;k<vac|1/) Y ylvac)
e 2w4 (wyg + ) K 2w, 4TaEN
M, . wg +
— j(vaclwﬁNwélvac) + 1 » 1 (Vaclwq+N1/);+vaac). (C13)
q q

The Fourier transformation of the correlation function F,,,,, is determined by

2N—1 _im(gn—q'm)

By = (vacl[y BlIvac) = = > ¢ ~"E,, (C14)

n,m=0

with g, g’ € {0,...,2N — 1}. Accordingly, n(q) can be written as
9 9 gly, n(q

n(q) = fa + 1, (C15)
Wq
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where the energy density in Fourier space is given by

1 - o ~
g = S Epengin = Fyo) = MgFping = My Eyqn- (C16)

The total particle number is then found by summing over all Fourier modes

N=>"n(@. (C17)
q

In the cold atom system, we proceed analogously but replace the link operators by the corresponding Schwinger
bosons U, — [£ (£ + 1)]1"'/2b"d,,. As the bosonic degrees of freedom are again considered as c-numbers, we
obtain very similar expressions for the particle number.
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