53 research outputs found
Dataset variability and carbonate concentration influence the performance of local visible-near infrared spectral models
The application of visual and near infrared soil spectroscopy (vis–NIR) is an easy and cost-efficient way to gain a wide variety of soil information to cover high spatial and temporal resolution in large-scale soil surveys and in local field-scale studies. However, unlike for conventional methods, the prediction accuracy of vis–NIR spectral models cannot yet be estimated before the data collection, which hampers its application at the local scale where often a high precision is required (e.g., field experiments). In this study we used soil data from six agricultural fields in Eastern Switzerland and calibrated i) field-specific (local) models and ii) general models (combining all fields) for organic carbon, total carbon, total nitrogen, permanganate oxidizable carbon and pH using partial least squares regression. 24 out of 30 local models showed an accurate or even excellent performance (ratio of performance to deviation (RPD) > 2) and the root mean square errors (RMSE) of prediction were, except for pH, maximum five times higher than the lab measurement error. The variability of a specific soil property and the mean carbonate concentration in the dataset were the two factors influencing the performance of the local models. We found a significant relationship between the coefficient of variation in the dataset and the metrics for model performance (R2, percental RMSE and RPD). Starting from a tolerable prediction error for the spectral measurements, the regressions can be used to develop a sampling design that matches the corresponding target variability. The five inaccurately performing local models with RPD < 2 were on the two fields with highest carbonate content raising the question if local vis–NIR models are suitable for soils with high carbonate concentration. General models combining the datasets from all six fields showed an accurate overall performance but the RMSE on the field level were higher compared to the local models
Prolonged heat acclimation and aerobic performance in endurance trained athletes
Frontiers is fully compliant with open access mandates, by publishing its articles under the Creative Commons Attribution licence (CC-BY). Funder mandates such as those by the Wellcome Trust (UK), National Institutes of Health (USA) and the Australian Research Council (Australia) are fully compatible with publishing in Frontiers. Authors retain copyright of their work and can deposit their publication in any repository. The work can be freely shared and adapted provided that appropriate credit is given and any changes specified.Heat acclimation (HA) involves physiological adaptations that directly promote exercise performance in hot environments. However, for endurance-athletes it is unclear if adaptations also improve aerobic capacity and performance in cool conditions, partly because previous randomized controlled trial (RCT) studies have been restricted to short intervention periods. Prolonged HA was therefore deployed in the present RCT study including 21 cyclists [38 ± 2 years, 184 ± 1 cm, 80.4 ± 1.7 kg, and maximal oxygen uptake (VO2max) of 58.1 ± 1.2 mL/min/kg; mean ± SE] allocated to either 5½ weeks of training in the heat [HEAT (n = 12)] or cool control [CON (n = 9)]. Training registration, familiarization to test procedures, determination of VO2max, blood volume and 15 km time trial (TT) performance were assessed in cool conditions (14°C) during a 2-week lead-in period, as well as immediately pre and post the intervention. Participants were instructed to maintain total training volume and complete habitual high intensity intervals in normal settings; but HEAT substituted part of cool training with 28 ± 2 sessions in the heat (1 h at 60% VO2max in 40°C; eliciting core temperatures above 39°C in all sessions), while CON completed all training in cool conditions. Acclimation for HEAT was verified by lower sweat sodium [Na+], reduced steady-state heart rate and improved submaximal exercise endurance in the heat. However, when tested in cool conditions both peak power output and VO2max remained unchanged for HEAT (pre 60.0 ± 1.5 vs. 59.8 ± 1.3 mL O2/min/kg). TT performance tested in 14°C was improved for HEAT and average power output increased from 298 ± 6 to 315 ± 6 W (P < 0.05), but a similar improvement was observed for CON (from 294 ± 11 to 311 ± 10 W). Based on the present findings, we conclude that training in the heat was not superior compared to normal (control) training for improving aerobic power or TT performance in cool conditions.publishedVersio
Resistance exercise training increases skeletal muscle mitochondrial respiration in chronic obstructive pulmonary disease
Chronic obstructive pulmonary disease (COPD) is associated with skeletal muscle mitochondrial dysfunction. Resistance exercise training (RT) is a training modality with a relatively small pulmonary demand that has been suggested to increase skeletal muscle oxidative enzyme activity in COPD. Whether a shift into a more oxidative profile following RT also translates into increased mitochondrial respiratory capacity in COPD is yet to be established. This study investigated the effects of 13 weeks of RT on m. vastus lateralis mitochondrial capacity in 11 per sons with moderate COPD [45% females, age: 69 ± 4 years (mean ± SD), predicted forced expiratory volume in 1 s (FEV1): 56 ± 7%] and 12 healthy controls (75% females, age: 66 ± 5 years, predicted FEV1: 110 ± 16%). RT was supervised and carried out two times per week. Leg exercises included leg press, knee extension, and knee flexion and were performed unilaterally with one leg conducting high-load training (10 repetitions maximum, 10RM) and the other leg conducting low-load training (30 repetitions maximum, 30RM). One-legged muscle mass, maximal muscle strength, and endurance performance were determined prior to and after the RT period, together with mitochondrial respiratory capacity using high-resolution respirometry and citrate synthase (CS) activity (a marker for mitochondrial volume density). Transcriptome analysis of genes associated with mitochondrial function was performed. Resistance exercise training led to similar improvements in one-legged muscle mass, muscle strength, and endurance performance in COPD and healthy individuals. In COPD, mitochondrial fatty acid oxidation capacity and oxidative phosphorylation increased following RT (+13 ± 22%, P = 0.033 and +9 ± 23%, P = 0.035, respectively). Marked increases were also seen in COPD for mitochondrial volume density (CS activity, +39 ± 35%, P = 0.001), which increased more than mitochondrial respiration, leading to lowered intrinsic mitochondrial function (respiration/CS activity) for complex-1- supported respiration ( 12 ± 43%, P = 0.033), oxidative phosphorylation ( 10 ± 42%, P = 0.037), and electron transfer system capacity ( 6 ± 52%, P = 0.027). No differences were observed between 10RM and 30RM RT, nor were there any adaptations in mitochondrial function following RT in healthy controls. RT led to differential expression of numerous genes related to mitochondrial function in both COPD and healthy controls, with no difference being observed between groups. Thirteen weeks of RT resulted in augmented skeletal muscle mitochondrial respiratory capacity in COPD, accompanied by alterations in the transcriptome and driven by an increase in mitochondrial quantity rather than improved mitochondrial quality.publishedVersio
Hematological adaptations to prolonged heat acclimation in endurance-trained males
Frontiers is fully compliant with open access mandates, by publishing its articles under the Creative Commons Attribution licence (CC-BY). Authors retain copyright of their work and can deposit their publication in any repository. The work can be freely shared and adapted provided that appropriate credit is given and any changes specified.Heat acclimation is associated with plasma volume (PV) expansion that occurs within the first week of exposure. However, prolonged effects on hemoglobin mass (Hbmass) are unclear as intervention periods in previous studies have not allowed sufficient time for erythropoiesis to manifest. Therefore, Hbmass, intravascular volumes, and blood volume (BV)-regulating hormones were assessed with 5½ weeks of exercise-heat acclimation (HEAT) or matched training in cold conditions (CON) in 21 male cyclists [(mean ± SD) age: 38 ± 9 years, body weight: 80.4 ± 7.9 kg, VO2peak: 59.1 ± 5.2 ml/min/kg]. HEAT (n = 12) consisted of 1 h cycling at 60% VO2peak in 40°C for 5 days/week in addition to regular training, whereas CON (n = 9) trained exclusively in cold conditions (<15°C). Before and after the intervention, Hbmass and intravascular volumes were assessed by carbon monoxide rebreathing, while reticulocyte count and BV-regulating hormones were measured before, after 2 weeks and post intervention. Total training volume during the intervention was similar (p = 0.282) between HEAT (509 ± 173 min/week) and CON (576 ± 143 min/week). PV increased (p = 0.004) in both groups, by 303 ± 345 ml in HEAT and 188 ± 286 ml in CON. There was also a main effect of time (p = 0.038) for Hbmass with +34 ± 36 g in HEAT and +2 ± 33 g in CON and a tendency toward a higher increase in Hbmass in HEAT compared to CON (time × group interaction: p = 0.061). The Hbmass changes were weakly correlated to alterations in PV (r = 0.493, p = 0.023). Reticulocyte count and BV-regulating hormones remained unchanged for both groups. In conclusion, Hbmass was slightly increased following prolonged training in the heat and although the mechanistic link remains to be revealed, the increase could represent a compensatory response in erythropoiesis secondary to PV expansion.publishedVersio
Effect of Exercise on Arterial Stiffness: Is There a Ceiling Effect?
BACKGROUND
Whether arterial stiffness (AS) can be improved by regular exercise in healthy individuals remains equivocal according to cross-sectional and longitudinal studies assessing arterial properties at discrete time points. The purpose of the present study was to pinpoint the time course of training-induced adaptations in central AS.
METHODS
Aorta characteristic impedance (Zc) and carotid distensibility (CD) were determined with ultrasonography prior to (week 0) and across 8 weeks (weeks 2, 4, and 8) of supervised endurance training (ET) (3 × 60 minutes cycle ergometry sessions per week), in 9 previously untrained healthy normotensive adults (27 ± 4 years) with no history of cardiovascular disease. Exercise capacity was assessed by maximal oxygen consumption (VO2max) elicited by incremental ergometry.
RESULTS
VO2max increased throughout the ET intervention (+12% from week 0 to week 8, P < 0.001, P for linear trend <0.001). Systolic blood pressure rose with ET (+7% from week 0 to week 8, P = 0.019, P for linear trend <0.001). Aorta Zc augmented from week 0 to week 8 of ET in all individuals (+38%, P = 0.003, P for linear trend = 0.002). CD did not significantly differ among time points (P = 0.196) although a linear decreasing trend was detected (P = 0.016).
CONCLUSIONS
Central AS augments during a conventional ET intervention that effectively enhances aerobic exercise capacity in young individuals. This suggests that normal, healthy elastic arteries are not amendable to improvement unless impairment is present
Best performances of visible–near-infrared models in soils with little carbonate – a field study in Switzerland
Conventional laboratory analysis of soil properties is often expensive and requires much time if various soil properties are to be measured. Visual and near-infrared (vis–NIR) spectroscopy offers a complementary and cost-efficient way to gain a wide variety of soil information at high spatial and temporal resolutions. Yet, applying vis–NIR spectroscopy requires confidence in the prediction accuracy of the infrared models. In this study, we used soil data from six agricultural fields in eastern Switzerland and calibrated (i) field-specific (local) models and (ii) general models (combining all fields) for soil organic carbon (SOC), permanganate oxidizable carbon (POXC), total nitrogen (N), total carbon (C) and pH using partial least-squares regression. The 30 local models showed a ratio of performance to deviation (RPD) between 1.14 and 5.27, and the root mean square errors (RMSE) were between 1.07 and 2.43 g kg−1 for SOC, between 0.03 and 0.07 g kg−1 for POXC, between 0.09 and 0.14 g kg−1 for total N, between 1.29 and 2.63 g kg−1 for total C, and between 0.04 and 0.19 for pH. Two fields with high carbonate content and poor correlation between the target properties were responsible for six local models with a low performance (RPD < 2). Analysis of variable importance in projection, as well as of correlations between spectral variables and target soil properties, confirmed that high carbonate content masked absorption features for SOC. Field sites with low carbonate content can be combined with general models with only a limited loss in prediction accuracy compared to the field-specific models. On the other hand, for fields with high carbonate contents, the prediction accuracy substantially decreased in general models. Whether the combination of soils with high carbonate contents in one prediction model leads to satisfying prediction accuracies needs further investigation
Effect of Exercise on Arterial Stiffness: Is There a Ceiling Effect?
Abstract BACKGROUND Whether arterial stiffness (AS) can be improved by regular exercise in healthy individuals remains equivocal according to cross-sectional and longitudinal studies assessing arterial properties at discrete time points. The purpose of the present study was to pinpoint the time course of training-induced adaptations in central AS. METHODS Aorta characteristic impedance (Zc) and carotid distensibility (CD) were determined with ultrasonography prior to (week 0) and across 8 weeks (weeks 2, 4, and 8) of supervised endurance training (ET) (3 × 60 minutes cycle ergometry sessions per week), in 9 previously untrained healthy normotensive adults (27 ± 4 years) with no history of cardiovascular disease. Exercise capacity was assessed by maximal oxygen consumption (VO2max) elicited by incremental ergometry. RESULTS VO2max increased throughout the ET intervention (+12% from week 0 to week 8, P < 0.001, P for linear trend <0.001). Systolic blood pressure rose with ET (+7% from week 0 to week 8, P = 0.019, P for linear trend <0.001). Aorta Zc augmented from week 0 to week 8 of ET in all individuals (+38%, P = 0.003, P for linear trend = 0.002). CD did not significantly differ among time points (P = 0.196) although a linear decreasing trend was detected (P = 0.016). CONCLUSIONS Central AS augments during a conventional ET intervention that effectively enhances aerobic exercise capacity in young individuals. This suggests that normal, healthy elastic arteries are not amendable to improvement unless impairment is present
Best performances of visible-near-infrared models in soils with little carbonate - a field study in Switzerland
Conventional laboratory analysis of soil properties is often expensive and requires much time if various soil properties are to be measured. Visual and near-infrared (vis-NIR) spectroscopy offers a complementary and cost-efficient way to gain a wide variety of soil information at high spatial and temporal resolutions. Yet, applying vis-NIR spectroscopy requires confidence in the prediction accuracy of the infrared models. In this study, we used soil data from six agricultural fields in eastern Switzerland and calibrated (i) field-specific (local) models and (ii) general models (combining all fields) for soil organic carbon (SOC), permanganate oxidizable carbon (POXC), total nitrogen (N), total carbon (C) and pH using partial least-squares regression. The 30 local models showed a ratio of performance to deviation (RPD) between 1.14 and 5.27, and the root mean square errors (RMSE) were between 1.07 and 2.43 g kg( - 1) for SOC, between 0.03 and 0.07 g kg( - 1) for POXC, between 0.09 and 0.14 g kg( - 1) for total N, between 1.29 and 2.63 g kg (- 1) for total C, and between 0.04 and 0.19 for pH. Two fields with high carbonate content and poor correlation between the target properties were responsible for six local models with a low performance (RPD < 2). Analysis of variable importance in projection, as well as of correlations between spectral variables and target soil properties, confirmed that high carbonate content masked absorption features for SOC. Field sites with low carbonate content can be combined with general models with only a limited loss in prediction accuracy compared to the field-specific models. On the other hand, for fields with high carbonate contents, the prediction accuracy substantially decreased in general models. Whether the combination of soils with high carbonate contents in one prediction model leads to satisfying prediction accuracies needs further investigation.ISSN:2199-3971ISSN:2199-398
- …