22 research outputs found

    Mechanistic dissection of myosin Va-based melanosome transport in vitro

    Get PDF
    Essenzielle zellulĂ€re Prozesse wie Zellwachstum, Teilung und Transport von Cargo sind auf intrazellulĂ€ren Transport angewiesen. Die dafĂŒr verantwortliche Transportmaschinerie besteht aus molekularen Motoren, die sich direktional auf Aktinfilamenten und Mikrotubuli, die als ‚zellulĂ€re Straßen‘ fungieren, bewegen. Myosin Motoren laufen auf Aktinfilamenten, wĂ€hrend Mikrotubuli den entgegengesetzt gerichteten Kinesin und Dynein Motoren als Straßen dienen. Interessanterweise sind in vielen FĂ€llen die koordinierten (oder konkurrierenden) AktivitĂ€ten der entsprechenden Aktin- und Mikrotubuli-basierten Transportsysteme fĂŒr Cargotransport in vivo erforderlich. Trotz dem detaillierten Wissen ĂŒber jedes einzelne Transportsystem sind nur sehr spĂ€rliche Informationen ĂŒber die funktionelle Verbindung zwischen dem Aktin/Myosin- und dem Mikrotubuli/Kinesin/Dynein-System erhĂ€ltlich. Um diese LĂŒcke zu schließen konzentriert sich diese Arbeit auf die Frage: Wie kommunizieren die Aktin- und Mikrotubuli-basierten Transportsysteme um die richtige Zustellung von Cargo zu gewĂ€hrleisten? Um Einblicke in die Mechanismen zu erhalten, die die Aktin- und Mikrotubuli-basierten Transportsysteme verbinden, habe ich Pigmentzellen (Melanophoren) von der Amphibie Xenopus laevis und Melanozyten von der Maus als zwei gut etablierte Modellsysteme verwendet. In Melanophoren werden Pigmentgranulen (Melanosomen) durch die vereinten KrĂ€fte der Mikrotubuli-basierten Dynein-1 und Kinesin-2 Motoren und dem Aktin-basierten Myosin Va Motor transportiert. Dieser Transport findet durch extrazellulĂ€re Signale statt, die die DirektionalitĂ€t des Melanosomentransports in vivo definieren. Es ist lange bekannt, das die Proteinkinase A (PKA) den nach innen gerichteten (Aggregation, niedrige PKA-AktivitĂ€t) und nach außen gerichteten (Dispersion, erhöhte PKA-AktivitĂ€t) Melanosomentransport dirigiert. Trotzdem blieben die molekularen Mechanismen, die eine solche direktionale Verteilung regulieren, die letzten zwei Jahrzehnte unbekannt. Vorangegangene Arbeit enthĂŒllte zahlreiche Details der Mikrotubuli-basierten Transportmaschinerie, wohingegen nur wenig ĂŒber das Aktin-basierte Transportsystem bekannt ist, das essenziell fĂŒr den Dispersionsprozess ist. Um mechanistische Einblicke in die Aktin-basierte Transportmaschinerie des Melanosomentransportes zu geben, habe ich die Aktin-basierte MotilitĂ€t von aufgereinigten Melanosomen in vitro rekonstituiert. Außerdem habe ich die Komponenten der Aktin-basierten Transportmaschinerie (der dreiteilige Myosin Va Transportkomplex, der aus Rab27a, Melanophilin und Myosin Va besteht) von Xenopus laevis und Maus rekombinant exprimiert um eine umfangreiche in vitro Charakterisierung durchzufĂŒhren. Die Rekonstitution des Aktin-basierten Melanosomentransportes in vitro zeigte, dass Melanosomen von Zellen mit hoher PKA-AktivitĂ€t (dispergierter Zellstatus) einen signifikant erhöhten Myosin Va-abhĂ€ngigen Transport aufweisen verglichen mit Melanosomen von Zellen mit niedriger PKA-AktivitĂ€t (aggregierter Zellstatus). Die Charakterisierung der Transportparameter des rekonstituierten Melanosomentransportes in vitro zeigte, dass PKA-AktivitĂ€t keinen Einfluss auf Geschwindigkeit oder LauflĂ€nge der Melanosomen hatte. Ich habe die PKA als molekularen Schalter identifiziert, der direkt den Transport zwischen den entsprechenden Zellstatus auf der MelanosomenoberflĂ€che reguliert. In vitro Phosphorylierungsexperimente mit den rekombinant exprimierten Komponenten Rab27a, Melanophilin und Myosin Va, die den dreiteiligen Myosin Va Transportkomplex in vivo bilden, demonstrieren, dass das Adaptorprotein Melanophilin das spezifische Phosphorylierungsziel der PKA in Xenopus und Maus ist. Besonders Melanophilin’s C-terminale AktinbindedomĂ€ne ist ausgeprĂ€gtes Ziel der Phosphorylierung. Es ist beachtenswert, dass die in vitro Phosphorylierung von Melanophilin’s AktinbindedomĂ€ne dem bereits beschriebenen in vivo Phosphorylierungsmuster sehr Ă€hnlich ist. In meiner Arbeit stelle ich eine effiziente Strategie zur Assemblierung des dreiteiligen Myosin Va Transportkomplex in vitro vor, die es mir ermöglichte die funktionalen Konsequenzen der Melanophilin-Phosphorylierung in vitro zu testen. Dekorationsexperimente mit Aktin und dem Rab27a/Melanophilin-Komplex und EinzelmolekĂŒl-TIRF (interne Totalreflexionsfluoreszenz)-Mikroskopie-Experimente mit dem dreiteiligen Rab27a/Melanophilin/Myosin Va-Komplex auf Aktinfilamenten deckten unerwartet auf, dass die Phosphorylierung von Melanophilin’s AktinbindedomĂ€ne nicht in Aktin-abhĂ€ngige Prozesse, wie Melanophilin’s Bindung zu Aktin oder der Bewegung des Myosin Va-Transportkomplex auf Aktinfilamenten, eingreift. Stattdessen regulierte Melanophilin’s Phosphorylierungsstatus ĂŒberraschend Melanophilin‘s Assoziation mit Mikrotubuli. Dephosphoryliertes Melanophilin zog die Bindung zu Mikrotubuli sogar in Gegenwart von Aktinfilamenten vor, wĂ€hrenddessen phosphoryliertes Melanophilin hauptsĂ€chlich mit Aktinfilamenten assoziierte auch wenn Mikrotubuli gegenwĂ€rtig waren. TatsĂ€chlich gibt Melanophilin’s Phosphorylierungsstatus vor, welches Filament der Rab27a/Melanophilin/Myosin Va-Komplex wĂ€hlt, wenn Mikrotubuli und Aktinfilamente gleichzeitig vorhanden sind. Genauer gesagt zeigte der dreiteilige Myosin Va-Transportkomplex mit phosphorylierten Melanophilin hauptsĂ€chlich direktionale Bewegung auf Aktinfilamenten in vitro, wie es von einem Aktin-basierten Motorprotein erwartet wird. Im Gegensatz dazu verstĂ€rkte die Dephosphorylierung von Melanophilin die Interaktion des dreiteiligen Myosin Va-Transportkomplexes mit Mikrotubuli und eine signifikante Anzahl an Komplexen zeigte Diffusion auf Mikrotubuli. Diese Ergebnisse decken die ĂŒberraschende regulatorische Dominanz des Adaptorproteins Melanophilin ĂŒber sein assoziertes Motorprotein Myosin Va auf und bieten einen Mechanismus an, wie Kommunikation zwischen dem Aktin- und Mikrotubuli-Transportsystemen in vivo bewerkstelligt werden könnte, und zwar durch das Adaptorprotein Melanophilin, das imstande ist mit Aktinfilamenten als auch mit Mikrotubuli zu interagieren. Die Bindungspreferenz des gesamten dreiteiligen Myosin Va- Transportkomplexes zu Aktinfilamenten oder Mikrotubuli wird durch den Phosphorylierungsstatus von Melanophilin reguliert. Zusammengenommen bieten die Beobachtungen dieser Arbeit erste Einblicke in das funktionelle Zusammenspiel zwischen den zwei zytoskelettalen Transportsystemen und stellen eine mechanistische ErklĂ€rung bereit, wie Zellen den Transport auf dem einen oder anderen zytoskelletalen Filament verschieben könnten.Essential cellular processes such as cell growth, division, migration, and cargo delivery rely on intracellular transport. The transport machinery responsible for such processes consists of molecular motors that move directionally on actin filaments or microtubules, which serve as ‘cellular roads’. Myosin motors walk on actin filaments, whereas microtubules serve as tracks for the oppositely directed kinesin and dynein motors. Interestingly, in many cases, the coordinated (or competing) activities of the respective actin- and microtubule-based systems are required for cargo transport in vivo. Despite the detailed knowledge on each individual transport system, only very sparse information is available on the functional interface between the actin/myosin- and the microtubule/kinesin/dynein-systems. To close this gap, this thesis is focused on the question: how is crosstalk between the actin- and microtubule-based transport systems achieved to bring about correct cargo delivery? To gain insights into the mechanisms that link the actin- and microtubule-based transport systems, I used pigment cells (melanophores) from the amphibian Xenopus laevis and melanocytes from mouse as two well-established model systems. In melanophores, pigment granules (melanosomes) are transported by the concerted action of the microtubule-based dynein-1 and kinesin-2 motors and the actin-based myosin Va motor upon external cues that in turn define the overall directionality of transport in vivo. It is long known that protein kinase A (PKA) orchestrates the inward (aggregation, decreased PKA activity) and the outward (dispersion, increased PKA activity) of movement of melanosomes. However, molecular mechanism(s) of how such directional distribution is regulated remained elusive over the past two decades. Previous work illuminated numerous details of the microtubule-based transport machinery that move the melanosome, whereas only little is known about the actin-based transport system that is essential for the dispersion process. To provide mechanistic insights into the actin-based machinery of melanosome transport, I reconstituted the actin-based motility of purified melanosomes in vitro. Furthermore, I recombinantly expressed the components of the actin-based transport machinery (the tripartite myosin Va transport complex consisting of Rab27a, melanophilin, and myosin Va) from Xenopus laevis and mouse to perform an extensive in vitro characterization. Reconstituting the actin-based transport of melanosomes in vitro revealed that melanosomes from cells with high PKA activity (i.e. dispersed cell state) exhibit significantly increased myosin Va-dependent transport compared to melanosomes derived from cells with low PKA activity (i.e. aggregated cell state). Characterizing the transport parameters of the reconstituted melanosome transport in vitro showed that PKA activity did not influence velocity or run length of melanosomes. I identified PKA as the molecular switch that directly regulates this transport between the respective cell states on the melanosome surface. In vitro phosphorylation assays with the recombinantly expressed components Rab27a, melanophilin, and myosin Va that form the myosin Va tripartite transport complex in vivo demonstrate that the adaptor protein melanophilin is the specific phosphorylation target of PKA in Xenopus and mouse. Particularly melanophilin’s C-terminal actin-binding domain is a pronounced phosphorylation target. Of note, in vitro phosphorylation of melanophilin’s actin-binding domain closely resembled the previously described in vivo phosphorylation pattern. In my work, I present an efficient strategy to assemble the tripartite myosin Va transport complex in vitro that enabled me to test the functional consequences of melanophilin phosphorylation in vitro. Filament decoration assays with actin and the Rab27a/melanophilin complex and single-molecule total internal reflection fluorescence (TIRF) microscopy assays with the tripartite Rab27a/melanophilin/myosin Va complex on actin filaments revealed unexpectedly that phosphorylation of melanophilin’s actin-binding domain did not interfere with actin-dependent processes such as binding of melanophilin to actin filaments or movement of the tripartite complex along actin filaments. Surprisingly instead, melanophilin’s phosphorylation state regulated its association with microtubules in vitro. Dephosphorylated melanophilin preferred to bind to microtubules even in the presence of actin filaments, whereas phosphorylated melanophilin predominantly associated with actin filaments when microtubules were also present. In fact, melanophilin’s phosphorylation state enforced track selection of the tripartite Rab27a/melanophilin/myosin Va complex when microtubules and actin filaments were present simultaneously. More precisely, the tripartite complex assembled with phosphorylated melanophilin mostly exhibited directional movement on actin filaments in vitro, as expected of an actin-based motor protein. In contrast, dephosphorylation of melanophilin enhanced the interaction between the tripartite complex and microtubules and a signification number of complexes showed diffusional movement on microtubules. These results reveal the surprising regulatory dominance of the adaptor protein melanophilin over its associated motor protein myosin Va and provide a mechanism of how crosstalk between the actin- and microtubule-transport systems might be achieved in vivo; namely through the adaptor protein melanophilin that is capable of interacting with both actin filaments and microtubules. The binding preference of the entire tripartite complex for actin or microtubules is regulated via the phosphorylation state of melanophilin. Taken together, the observations presented in this thesis offer first insights into the functional interface between the two cytoskeletal transport systems and provide a mechanistic explanation how cells might bias cargo transport on one or the other cytoskeletal filament

    Mechanistic dissection of myosin Va-based melanosome transport in vitro

    Get PDF
    Essenzielle zellulĂ€re Prozesse wie Zellwachstum, Teilung und Transport von Cargo sind auf intrazellulĂ€ren Transport angewiesen. Die dafĂŒr verantwortliche Transportmaschinerie besteht aus molekularen Motoren, die sich direktional auf Aktinfilamenten und Mikrotubuli, die als ‚zellulĂ€re Straßen‘ fungieren, bewegen. Myosin Motoren laufen auf Aktinfilamenten, wĂ€hrend Mikrotubuli den entgegengesetzt gerichteten Kinesin und Dynein Motoren als Straßen dienen. Interessanterweise sind in vielen FĂ€llen die koordinierten (oder konkurrierenden) AktivitĂ€ten der entsprechenden Aktin- und Mikrotubuli-basierten Transportsysteme fĂŒr Cargotransport in vivo erforderlich. Trotz dem detaillierten Wissen ĂŒber jedes einzelne Transportsystem sind nur sehr spĂ€rliche Informationen ĂŒber die funktionelle Verbindung zwischen dem Aktin/Myosin- und dem Mikrotubuli/Kinesin/Dynein-System erhĂ€ltlich. Um diese LĂŒcke zu schließen konzentriert sich diese Arbeit auf die Frage: Wie kommunizieren die Aktin- und Mikrotubuli-basierten Transportsysteme um die richtige Zustellung von Cargo zu gewĂ€hrleisten? Um Einblicke in die Mechanismen zu erhalten, die die Aktin- und Mikrotubuli-basierten Transportsysteme verbinden, habe ich Pigmentzellen (Melanophoren) von der Amphibie Xenopus laevis und Melanozyten von der Maus als zwei gut etablierte Modellsysteme verwendet. In Melanophoren werden Pigmentgranulen (Melanosomen) durch die vereinten KrĂ€fte der Mikrotubuli-basierten Dynein-1 und Kinesin-2 Motoren und dem Aktin-basierten Myosin Va Motor transportiert. Dieser Transport findet durch extrazellulĂ€re Signale statt, die die DirektionalitĂ€t des Melanosomentransports in vivo definieren. Es ist lange bekannt, das die Proteinkinase A (PKA) den nach innen gerichteten (Aggregation, niedrige PKA-AktivitĂ€t) und nach außen gerichteten (Dispersion, erhöhte PKA-AktivitĂ€t) Melanosomentransport dirigiert. Trotzdem blieben die molekularen Mechanismen, die eine solche direktionale Verteilung regulieren, die letzten zwei Jahrzehnte unbekannt. Vorangegangene Arbeit enthĂŒllte zahlreiche Details der Mikrotubuli-basierten Transportmaschinerie, wohingegen nur wenig ĂŒber das Aktin-basierte Transportsystem bekannt ist, das essenziell fĂŒr den Dispersionsprozess ist. Um mechanistische Einblicke in die Aktin-basierte Transportmaschinerie des Melanosomentransportes zu geben, habe ich die Aktin-basierte MotilitĂ€t von aufgereinigten Melanosomen in vitro rekonstituiert. Außerdem habe ich die Komponenten der Aktin-basierten Transportmaschinerie (der dreiteilige Myosin Va Transportkomplex, der aus Rab27a, Melanophilin und Myosin Va besteht) von Xenopus laevis und Maus rekombinant exprimiert um eine umfangreiche in vitro Charakterisierung durchzufĂŒhren. Die Rekonstitution des Aktin-basierten Melanosomentransportes in vitro zeigte, dass Melanosomen von Zellen mit hoher PKA-AktivitĂ€t (dispergierter Zellstatus) einen signifikant erhöhten Myosin Va-abhĂ€ngigen Transport aufweisen verglichen mit Melanosomen von Zellen mit niedriger PKA-AktivitĂ€t (aggregierter Zellstatus). Die Charakterisierung der Transportparameter des rekonstituierten Melanosomentransportes in vitro zeigte, dass PKA-AktivitĂ€t keinen Einfluss auf Geschwindigkeit oder LauflĂ€nge der Melanosomen hatte. Ich habe die PKA als molekularen Schalter identifiziert, der direkt den Transport zwischen den entsprechenden Zellstatus auf der MelanosomenoberflĂ€che reguliert. In vitro Phosphorylierungsexperimente mit den rekombinant exprimierten Komponenten Rab27a, Melanophilin und Myosin Va, die den dreiteiligen Myosin Va Transportkomplex in vivo bilden, demonstrieren, dass das Adaptorprotein Melanophilin das spezifische Phosphorylierungsziel der PKA in Xenopus und Maus ist. Besonders Melanophilin’s C-terminale AktinbindedomĂ€ne ist ausgeprĂ€gtes Ziel der Phosphorylierung. Es ist beachtenswert, dass die in vitro Phosphorylierung von Melanophilin’s AktinbindedomĂ€ne dem bereits beschriebenen in vivo Phosphorylierungsmuster sehr Ă€hnlich ist. In meiner Arbeit stelle ich eine effiziente Strategie zur Assemblierung des dreiteiligen Myosin Va Transportkomplex in vitro vor, die es mir ermöglichte die funktionalen Konsequenzen der Melanophilin-Phosphorylierung in vitro zu testen. Dekorationsexperimente mit Aktin und dem Rab27a/Melanophilin-Komplex und EinzelmolekĂŒl-TIRF (interne Totalreflexionsfluoreszenz)-Mikroskopie-Experimente mit dem dreiteiligen Rab27a/Melanophilin/Myosin Va-Komplex auf Aktinfilamenten deckten unerwartet auf, dass die Phosphorylierung von Melanophilin’s AktinbindedomĂ€ne nicht in Aktin-abhĂ€ngige Prozesse, wie Melanophilin’s Bindung zu Aktin oder der Bewegung des Myosin Va-Transportkomplex auf Aktinfilamenten, eingreift. Stattdessen regulierte Melanophilin’s Phosphorylierungsstatus ĂŒberraschend Melanophilin‘s Assoziation mit Mikrotubuli. Dephosphoryliertes Melanophilin zog die Bindung zu Mikrotubuli sogar in Gegenwart von Aktinfilamenten vor, wĂ€hrenddessen phosphoryliertes Melanophilin hauptsĂ€chlich mit Aktinfilamenten assoziierte auch wenn Mikrotubuli gegenwĂ€rtig waren. TatsĂ€chlich gibt Melanophilin’s Phosphorylierungsstatus vor, welches Filament der Rab27a/Melanophilin/Myosin Va-Komplex wĂ€hlt, wenn Mikrotubuli und Aktinfilamente gleichzeitig vorhanden sind. Genauer gesagt zeigte der dreiteilige Myosin Va-Transportkomplex mit phosphorylierten Melanophilin hauptsĂ€chlich direktionale Bewegung auf Aktinfilamenten in vitro, wie es von einem Aktin-basierten Motorprotein erwartet wird. Im Gegensatz dazu verstĂ€rkte die Dephosphorylierung von Melanophilin die Interaktion des dreiteiligen Myosin Va-Transportkomplexes mit Mikrotubuli und eine signifikante Anzahl an Komplexen zeigte Diffusion auf Mikrotubuli. Diese Ergebnisse decken die ĂŒberraschende regulatorische Dominanz des Adaptorproteins Melanophilin ĂŒber sein assoziertes Motorprotein Myosin Va auf und bieten einen Mechanismus an, wie Kommunikation zwischen dem Aktin- und Mikrotubuli-Transportsystemen in vivo bewerkstelligt werden könnte, und zwar durch das Adaptorprotein Melanophilin, das imstande ist mit Aktinfilamenten als auch mit Mikrotubuli zu interagieren. Die Bindungspreferenz des gesamten dreiteiligen Myosin Va- Transportkomplexes zu Aktinfilamenten oder Mikrotubuli wird durch den Phosphorylierungsstatus von Melanophilin reguliert. Zusammengenommen bieten die Beobachtungen dieser Arbeit erste Einblicke in das funktionelle Zusammenspiel zwischen den zwei zytoskelettalen Transportsystemen und stellen eine mechanistische ErklĂ€rung bereit, wie Zellen den Transport auf dem einen oder anderen zytoskelletalen Filament verschieben könnten.Essential cellular processes such as cell growth, division, migration, and cargo delivery rely on intracellular transport. The transport machinery responsible for such processes consists of molecular motors that move directionally on actin filaments or microtubules, which serve as ‘cellular roads’. Myosin motors walk on actin filaments, whereas microtubules serve as tracks for the oppositely directed kinesin and dynein motors. Interestingly, in many cases, the coordinated (or competing) activities of the respective actin- and microtubule-based systems are required for cargo transport in vivo. Despite the detailed knowledge on each individual transport system, only very sparse information is available on the functional interface between the actin/myosin- and the microtubule/kinesin/dynein-systems. To close this gap, this thesis is focused on the question: how is crosstalk between the actin- and microtubule-based transport systems achieved to bring about correct cargo delivery? To gain insights into the mechanisms that link the actin- and microtubule-based transport systems, I used pigment cells (melanophores) from the amphibian Xenopus laevis and melanocytes from mouse as two well-established model systems. In melanophores, pigment granules (melanosomes) are transported by the concerted action of the microtubule-based dynein-1 and kinesin-2 motors and the actin-based myosin Va motor upon external cues that in turn define the overall directionality of transport in vivo. It is long known that protein kinase A (PKA) orchestrates the inward (aggregation, decreased PKA activity) and the outward (dispersion, increased PKA activity) of movement of melanosomes. However, molecular mechanism(s) of how such directional distribution is regulated remained elusive over the past two decades. Previous work illuminated numerous details of the microtubule-based transport machinery that move the melanosome, whereas only little is known about the actin-based transport system that is essential for the dispersion process. To provide mechanistic insights into the actin-based machinery of melanosome transport, I reconstituted the actin-based motility of purified melanosomes in vitro. Furthermore, I recombinantly expressed the components of the actin-based transport machinery (the tripartite myosin Va transport complex consisting of Rab27a, melanophilin, and myosin Va) from Xenopus laevis and mouse to perform an extensive in vitro characterization. Reconstituting the actin-based transport of melanosomes in vitro revealed that melanosomes from cells with high PKA activity (i.e. dispersed cell state) exhibit significantly increased myosin Va-dependent transport compared to melanosomes derived from cells with low PKA activity (i.e. aggregated cell state). Characterizing the transport parameters of the reconstituted melanosome transport in vitro showed that PKA activity did not influence velocity or run length of melanosomes. I identified PKA as the molecular switch that directly regulates this transport between the respective cell states on the melanosome surface. In vitro phosphorylation assays with the recombinantly expressed components Rab27a, melanophilin, and myosin Va that form the myosin Va tripartite transport complex in vivo demonstrate that the adaptor protein melanophilin is the specific phosphorylation target of PKA in Xenopus and mouse. Particularly melanophilin’s C-terminal actin-binding domain is a pronounced phosphorylation target. Of note, in vitro phosphorylation of melanophilin’s actin-binding domain closely resembled the previously described in vivo phosphorylation pattern. In my work, I present an efficient strategy to assemble the tripartite myosin Va transport complex in vitro that enabled me to test the functional consequences of melanophilin phosphorylation in vitro. Filament decoration assays with actin and the Rab27a/melanophilin complex and single-molecule total internal reflection fluorescence (TIRF) microscopy assays with the tripartite Rab27a/melanophilin/myosin Va complex on actin filaments revealed unexpectedly that phosphorylation of melanophilin’s actin-binding domain did not interfere with actin-dependent processes such as binding of melanophilin to actin filaments or movement of the tripartite complex along actin filaments. Surprisingly instead, melanophilin’s phosphorylation state regulated its association with microtubules in vitro. Dephosphorylated melanophilin preferred to bind to microtubules even in the presence of actin filaments, whereas phosphorylated melanophilin predominantly associated with actin filaments when microtubules were also present. In fact, melanophilin’s phosphorylation state enforced track selection of the tripartite Rab27a/melanophilin/myosin Va complex when microtubules and actin filaments were present simultaneously. More precisely, the tripartite complex assembled with phosphorylated melanophilin mostly exhibited directional movement on actin filaments in vitro, as expected of an actin-based motor protein. In contrast, dephosphorylation of melanophilin enhanced the interaction between the tripartite complex and microtubules and a signification number of complexes showed diffusional movement on microtubules. These results reveal the surprising regulatory dominance of the adaptor protein melanophilin over its associated motor protein myosin Va and provide a mechanism of how crosstalk between the actin- and microtubule-transport systems might be achieved in vivo; namely through the adaptor protein melanophilin that is capable of interacting with both actin filaments and microtubules. The binding preference of the entire tripartite complex for actin or microtubules is regulated via the phosphorylation state of melanophilin. Taken together, the observations presented in this thesis offer first insights into the functional interface between the two cytoskeletal transport systems and provide a mechanistic explanation how cells might bias cargo transport on one or the other cytoskeletal filament

    Myosin Va’s adaptor protein melanophilin enforces track selection on the microtubule and actin networks in vitro

    Get PDF
    Significance Inner organization of eukaryotic cells intimately depends on the active transport of diverse intracellular cargo on the ubiquitous actin and microtubule networks. The underlying mechanisms of such directional transport processes have been of outstanding interest. We studied a motor complex composed of Rab27a, melanophilin, and myosin Va and found, surprisingly, that the adaptor protein melanophilin toggled the binding preference toward actin or microtubules in vitro. Our results offer unexpected mechanistic insights into biasing the directionality of a moving organelle on the cytoskeleton through phospho-targeting the adaptor protein rather than its motor in vivo.</jats:p

    Loss of key EMT-regulating miRNAs highlight the role of ZEB1 in EGFR tyrosine kinase inhibitor-resistant NSCLC

    Get PDF
    Despite recent advances in the treatment of non-small cell lung cancer (NSCLC), acquired drug resistance to targeted therapy remains a major obstacle. Epithelial-mesenchymal transition (EMT) has been identified as a key resistance mechanism in NSCLC. Here, we investigated the mechanistic role of key EMT-regulating small non-coding microRNAs (miRNAs) in sublines of the NSCLC cell line HCC4006 adapted to afatinib, erlotinib, gefitinib, or osimertinib. The most differentially expressed miRNAs derived from extracellular vesicles were associated with EMT, and their predicted target ZEB1 was significantly overexpressed in all resistant cell lines. Transfection of a miR-205-5p mimic partially reversed EMT by inhibiting ZEB1, restoring CDH1 expression, and inhibiting migration in erlotinib-resistant cells. Gene expression of EMT-markers, transcription factors, and miRNAs were correlated during stepwise osimertinib adaptation of HCC4006 cells. Temporally relieving cells of osimertinib reversed transition trends, suggesting that the implementation of treatment pauses could provide prolonged benefits for patients. Our results provide new insights into the contribution of miRNAs to drug-resistant NSCLC harboring EGFR-activating mutations and highlight their role as potential biomarkers and therapeutic targets

    A straightforward multiparametric quality control protocol for proton magnetic resonance spectroscopy: Validation and comparison of various 1.5 T and 3 T clinical scanner systems

    Get PDF
    Purpose: The aim of this study was to propose and validate across various clinical scanner systems a straightforward multiparametric quality assurance procedure for proton magnetic resonance spectroscopy (MRS). Methods: Eighteen clinical 1.5 T and 3 T scanner systems for MRS, from 16 centres and 3 different manufacturers, were enrolled in the study. A standard spherical water phantom was employed by all centres. The acquisition protocol included 3 sets of single (isotropic) voxel (size 20 mm) PRESS acquisitions with unsuppressed water signal and acquisition voxel position at isocenter as well as off-center, repeated 4/5 times within approximately 2 months. Water peak linewidth (LW) and area under the water peak (AP) were estimated. Results: LW values [mean (standard deviation)] were 1.4 (1.0) Hz and 0.8 (0.3) Hz for 3 T and 1.5 T scanners, respectively. The mean (standard deviation) (across all scanners) coefficient of variation of LW and AP for different spatial positions of acquisition voxel were 43% (20%) and 11% (11%), respectively. The mean (standard deviation) phantom T2 values were 1145 (50) ms and 1010 (95) ms for 1.5 T and 3 T scanners, respectively. The mean (standard deviation) (across all scanners) coefficients of variation for repeated measurements of LW, AP and T2 were 25% (20%), 10% (14%) and 5% (2%), respectively. Conclusions: We proposed a straightforward multiparametric and not time consuming quality control protocol for MRS, which can be included in routine and periodic quality assurance procedures. The protocol has been validated and proven to be feasible in a multicentre comparison study of a fairly large number of clinical 1.5 T and 3 T scanner systems

    The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species

    Get PDF
    The Mediterranean fruit fly (medfly), Ceratitis capitata, is a major destructive insect pest due to its broad host range, which includes hundreds of fruits and vegetables. It exhibits a unique ability to invade and adapt to ecological niches throughout tropical and subtropical regions of the world, though medfly infestations have been prevented and controlled by the sterile insect technique (SIT) as part of integrated pest management programs (IPMs). The genetic analysis and manipulation of medfly has been subject to intensive study in an effort to improve SIT efficacy and other aspects of IPM control

    Tracing the Origin of Cell-Free DNA Molecules through Tissue-Specific Epigenetic Signatures

    No full text
    All cell and tissue types constantly release DNA fragments into human body fluids by various mechanisms including programmed cell death, accidental cell degradation and active extrusion. Particularly, cell-free DNA (cfDNA) in plasma or serum has been utilized for minimally invasive molecular diagnostics. Disease onset or pathological conditions that lead to increased cell death alter the contribution of different tissues to the total pool of cfDNA. Because cfDNA molecules retain cell-type specific epigenetic features, it is possible to infer tissue-of-origin from epigenetic characteristics. Recent research efforts demonstrated that analysis of, e.g., methylation patterns, nucleosome occupancy, and fragmentomics determined the cell- or tissue-of-origin of individual cfDNA molecules. This novel tissue-of origin-analysis enables to estimate the contributions of different tissues to the total cfDNA pool in body fluids and find tissues with increased cell death (pathologic condition), expanding the portfolio of liquid biopsies towards a wide range of pathologies and early diagnosis. In this review, we summarize the currently available tissue-of-origin approaches and point out the next steps towards clinical implementation

    Preanalytical Variables in the Analysis of Mitochondrial DNA in Whole Blood and Plasma from Pancreatic Cancer Patients

    No full text
    Given the crucial role of mitochondria as the main cellular energy provider and its contribution towards tumor growth, chemoresistance, and cancer cell plasticity, mitochondrial DNA (mtDNA) could serve as a relevant biomarker. Thus, the profiling of mtDNA mutations and copy number variations is receiving increasing attention for its possible role in the early diagnosis and monitoring therapies of human cancers. This applies particularly to highly aggressive pancreatic cancer, which is often diagnosed late and is associated with poor prognosis. As current diagnostic procedures are based on imaging, tissue histology, and protein biomarkers with rather low specificity, tumor-derived mtDNA mutations detected from whole blood represents a potential significant leap forward towards early cancer diagnosis. However, for future routine use in clinical settings it is essential that preanalytics related to the characterization of mtDNA in whole blood are thoroughly standardized, controlled, and subject to proper quality assurance, yet this is largely lacking. Therefore, in this study we carried out a comprehensive preanalytical workup comparing different mtDNA extraction methods and testing important preanalytical steps, such as the use of different blood collection tubes, different storage temperatures, length of storage time, and yields in plasma vs. whole blood. To identify analytical and preanalytical differences, all variables were tested in both healthy subjects and pancreatic carcinoma patients. Our results demonstrated a significant difference between cancer patients and healthy subjects for some preanalytical workflows, while other workflows failed to yield statistically significant differences. This underscores the importance of controlling and standardizing preanalytical procedures in the development of clinical assays based on the measurement of mtDNA

    New Perspectives on the Importance of Cell-Free DNA Biology

    No full text
    Body fluids are constantly replenished with a population of genetically diverse cell-free DNA (cfDNA) fragments, representing a vast reservoir of information reflecting real-time changes in the host and metagenome. As many body fluids can be collected non-invasively in a one-off and serial fashion, this reservoir can be tapped to develop assays for the diagnosis, prognosis, and monitoring of wide-ranging pathologies, such as solid tumors, fetal genetic abnormalities, rejected organ transplants, infections, and potentially many others. The translation of cfDNA research into useful clinical tests is gaining momentum, with recent progress being driven by rapidly evolving preanalytical and analytical procedures, integrated bioinformatics, and machine learning algorithms. Yet, despite these spectacular advances, cfDNA remains a very challenging analyte due to its immense heterogeneity and fluctuation in vivo. It is increasingly recognized that high-fidelity reconstruction of the information stored in cfDNA, and in turn the development of tests that are fit for clinical roll-out, requires a much deeper understanding of both the physico-chemical features of cfDNA and the biological, physiological, lifestyle, and environmental factors that modulate it. This is a daunting task, but with significant upsides. In this review we showed how expanded knowledge on cfDNA biology and faithful reverse-engineering of cfDNA samples promises to (i) augment the sensitivity and specificity of existing cfDNA assays; (ii) expand the repertoire of disease-specific cfDNA markers, thereby leading to the development of increasingly powerful assays; (iii) reshape personal molecular medicine; and (iv) have an unprecedented impact on genetics research
    corecore