10 research outputs found

    Cardioprotective Action of Selective Estrogen-receptor Agonists against Myocardial Ischemia and Reperfusion Injury

    Full text link
    Articlehttp://deepblue.lib.umich.edu/bitstream/2027.42/96964/1/UMURF-Issue02_2005-NRObeid.pd

    Organ donation after cardiac determination of death (DCD): a swine model.

    No full text
    Donors after Cardiac Death (DCD) may reduce the organ scarcity; however, their use is limited because of warm ischemia time. Fortunately, this is less important in a subclass of DCD called expected (e-DCD), those with irreversible but incomplete brain injury. This study analyzed hemodynamic/pulmonary data to establish a clinically relevant model of cardiac death that would simulate an e-DCD setting. Hemodynamics, pulmonary artery flows, arterial blood gasses, and left atrial pressure were recorded q 5 minutes in anesthetized swine. After baseline data collection, the ventilator was discontinued and heparin was administered. Cardiac death was defined: as asystole, or mean arterial presusure < or = 25 mm Hg with a pulse pressure < or = 20 mm Hg. The time to death was approximately 14.8 minutes. Within 5 minutes of removal of the ventilator, there was a hyperdynamic period. Blood gases throughout the apneic time showed a rapid hypercapnia and acidosis. The hyperdynamic reflex response was followed by hypotension, bradycardia, and finally asystole or ventricular fibrillation. The protocol of withdrawal of ventilation, systemic anticoagulation, determination of death was developed to closely resemble the clinical e-DCD scenario. The physiologic changes that happen before death in DCD were described. An e-DCD model that can be used in studies related to organ transplantation was established.</p

    Lung physiology during ECS resuscitation of DCD donors followed by in situ assessment of lung function.

    No full text
    Extracorporeal cardiopulmonary support (ECS) of donors after cardiac death (DCD) has been shown to improve abdominal organs for transplantation. This study assesses whether pulmonary congestion occurs during ECS with the heart arrested and describes an in vivo method to assess if lungs are suitable for transplantation from DCD donors after ECS resuscitation. Cardiac arrest was induced in 30 kg pigs, followed by 10 min of warm ischemia. Cannulae were placed into the right atrium (RA) and iliac artery, and veno-arterial ECS was initiated for 90 min with lungs inflated, group 1 (n = 5) or deflated, group 2 (n = 3). Left atrial pressures were measured as a marker for pulmonary congestion. After 90 min of ECS, lung function was evaluated. Cannulae were placed into the pulmonary artery (PA) and left ventricle (LV). A second pump was included, and ECS was converted to a bi-ventricular (bi-VAD) system. The RVAD drained from the RA and pumped into the PA, and the LVAD drained the LV and pumped into the iliac. This brought the lungs back into circulation for a 1-hr assessment period. The oxygenator was turned off, and ventilation was restarted. Flows, blood gases, PA and left atrial pressures, and compliance were recorded. In both the groups, LA pressure wasperiod, PA flows were 1.4-2.2 L/min. PO2 was >300 mm Hg, with normal PCO2. Extracorporeal cardiopulmonary support resuscitation of DCD donors is feasible and allows for assessment of function before procurement. Extracorporeal cardiopulmonary support does not cause pulmonary congestion, and the lungs retain adequate function for transplantation. Compliance correlated with lung function.</p
    corecore