15 research outputs found

    Assessment of Spatio-Temporal Changes of Land Use and Land Cover over South-Western African Basins and Their Relations with Variations of Discharges

    Get PDF
    West African basins play a vital role in the socio-economic development of the region. They are mostly trans-boundary and sources of different land use practices. This work attempts to assess the spatio-temporal land use and land cover changes over three South Western African basins (Volta, Mono and Sassandra basins) and their influence on discharge. The land use and land cover maps of each basin were developed for 1988, 2002 and 2016. The results show that all the studied basins present an increase in water bodies, built-up, agricultural land and a decline in vegetative areas. These increases in water bodies and land use are as a result of an increase in small reservoirs, of dugouts and of dam constructions. However, the decline in some vegetative clusters could be attributed to the demographic and socio-economic growth as expressed by the expansion of agriculture and urbanization. The basic statistical analysis of precipitation and discharge data reveals that the mean annual discharge varies much more than the total annual precipitation at the three basins. For instance, in the entire Volta basin, the annual precipitation coefficient of variation (CV) is 10% while the annual discharge CV of Nawuni, Saboba and Bui are 43.6%, 36.51% and 47.43%, respectively. In Mono basin, the annual precipitation CV is 11.5% while the Nangbeto and Athieme annual discharge CV are 37.15% and 46.60%, respectively. The annual precipitation CV in Sassandra basin is 7.64% while the annual discharge CV of Soubre and Dakpadou are 29.41% and 37%, respectively. The discharge varies at least three times much more than the precipitation in the studied basins. The same conclusion was found for all months except the driest months (December and January). We showed that this great variation in discharge is mainly due to land use and land cover changes. Beside the hydrological modification of the land use and land cover changes, the climate of the region as well as the water quality and availability and the hydropower generation may be impacted by these changes in land surfaces conditions. Therefore, these impacts should be further assessed to implement appropriate climate services and measures for a sustainable land use and water management

    Assessment of Spatio-Temporal Changes of Land Use and Land Cover over South-Western African Basins and Their Relations with Variations of Discharges

    No full text
    West African basins play a vital role in the socio-economic development of the region. They are mostly trans-boundary and sources of different land use practices. This work attempts to assess the spatio-temporal land use and land cover changes over three South Western African basins (Volta, Mono and Sassandra basins) and their influence on discharge. The land use and land cover maps of each basin were developed for 1988, 2002 and 2016. The results show that all the studied basins present an increase in water bodies, built-up, agricultural land and a decline in vegetative areas. These increases in water bodies and land use are as a result of an increase in small reservoirs, of dugouts and of dam constructions. However, the decline in some vegetative clusters could be attributed to the demographic and socio-economic growth as expressed by the expansion of agriculture and urbanization. The basic statistical analysis of precipitation and discharge data reveals that the mean annual discharge varies much more than the total annual precipitation at the three basins. For instance, in the entire Volta basin, the annual precipitation coefficient of variation (CV) is 10% while the annual discharge CV of Nawuni, Saboba and Bui are 43.6%, 36.51% and 47.43%, respectively. In Mono basin, the annual precipitation CV is 11.5% while the Nangbeto and Athieme annual discharge CV are 37.15% and 46.60%, respectively. The annual precipitation CV in Sassandra basin is 7.64% while the annual discharge CV of Soubre and Dakpadou are 29.41% and 37%, respectively. The discharge varies at least three times much more than the precipitation in the studied basins. The same conclusion was found for all months except the driest months (December and January). We showed that this great variation in discharge is mainly due to land use and land cover changes. Beside the hydrological modification of the land use and land cover changes, the climate of the region as well as the water quality and availability and the hydropower generation may be impacted by these changes in land surfaces conditions. Therefore, these impacts should be further assessed to implement appropriate climate services and measures for a sustainable land use and water management

    Potential impacts of climate, land use and land cover changes on hydropower generation in West Africa: a review

    No full text
    International audienceThis study aims to review the existing literature on the past and future effects of climate, land use, and land cover changes on hydropower generation in West Africa (WA), based on listings in the Scopus and Google Scholar databases. This review shows that several African hydropower plants have experienced repeated power disruptions over the last three decades due to climate change and variability but it is less documented how increasing land use and land cover changes around the major dams have impacted the hydrological system and the hydropower generation. In the future, the risks of hydropower in WA may not be equally distributed within a country or region. Despite uncertainties in precipitation and on impacts on streamflow and water level in major basins, climate change is likely to reduce the available water over the range of 10%-20% (15%-40%) for the RCP4.5 (RCP8.5) scenario by 2050, which may considerably affect the water demand across all sectors, including hydropower. However, in the Kainji dam (Niger River basin), models project an increase in rainfall favorable to hydropower production for both RCP4.5 and RCP8.5. In contrast, within the Black Volta sub-basin, the intensification of land use is predicted to favor runoff and, consequently, an increase in the generation of Bui hydropower in the near future, even though models predict a rainfall decrease. This increase in land use for agriculture to feed a growing population has other adverse effects that need to be assessed, namely sedimentation and siltation, which are harmful to hydropower plants. Finally, the combined impact of climate and land use changes on the efficiency of hydroelectric infrastructure in WA is not well documented, while sustainable planning and investments in the hydropower sector require consideration of the nexus between climate, land use changes, and water

    Land Use and Land Cover Changes under Climate Uncertainty: Modelling the Impacts on Hydropower Production in Western Africa

    No full text
    The Bui hydropower plant plays a vital role in the socio-economic development of Ghana. This paper attempt to explore the combined effects of climate-land use land cover change on power production using the (WEAP) model: Water Evaluation and Planning system. The historical analysis of rainfall and stream flow variability showed that the annual coefficient of variation of rainfall and stream flow are, respectively, 8.6% and 60.85%. The stream flow varied greatly than the rainfall, due to land use land cover changes (LULC). In fact, the LULC analysis revealed important changes in vegetative areas and water bodies. The WEAP model evaluation showed that combined effects of LULC and climate change reduce water availability for all of demand sectors, including hydropower generation at the Bui hydropower plant. However, it was projected that Bui power production will increase by 40.7% and 24.93%, respectively, under wet and adaptation conditions, and decrease by 46% and 2.5%, respectively, under dry and current conditions. The wet condition is defined as an increase in rainfall by 14%, the dry condition as the decrease in rainfall by 15%; current account is business as usual, and the adaptation is as the efficient use of water for the period 2012–2040

    Modeling climate change impact on inflow and hydropower generation of Nangbeto Dam in West Africa using multi-model CORDEX ensemble and ensemble machine learning

    No full text
    Climate change (CC) poses a threat to renewable hydropower, which continues to play a significant role in energy generation in West Africa (WA). Thus, the assessment of the impacts of climate change and climate variability on hydropower generation is critical for dam management. This study develops a framework based on ensemble climate models and ensemble machine learning methods to assess the projected impacts of CC on inflow to the reservoir and hydropower generation at the Nangbeto Hydropower plant in WA. Inflow to reservoir and energy generation for the future (2020–2099) is modeled using climate models output data from Coordinated Regional Downscaling Experiment to produce a publicly accessible hydropower dataset from 1980 to 2099. The bias-adjusted ensemble mean of eleven climate models for representative concentration pathways (RC4.5 and RCP8.5) are used. The added value of this approach is to use fewer input data (temperature and precipitation) while focusing on their lagged effect on inflow and energy. Generally, the model output strongly correlates with the observation (1986–2005) with a Pearson correlation of 0.86 for energy and 0.82 for inflow while the mean absolute error is 2.97% for energy and 9.73% for inflow. The results reveals that both inflow and energy simulated over the future periods (2020–2039, 2040–2059, 2060–2079, and 2080–2099) will decrease relative to the historical period (1986–2005) for both RCPs in the range of (2.5–20.5% and 1–8.5% for inflow and energy, respectively), at annual, monthly and seasonal time scales. Therefore, these results should be considered by decision-makers when assessing the best option for the energy mix development plan

    Analysis of hydroclimatic trends and variability and their impacts on hydropower generation in two river basins in CĂ´te d'Ivoire (West Africa) during 1981-2017

    No full text
    International audienceClimate change (CC) and variability impacts on hydroelectric generation have become critical for hydropower management. The trends of inflow, outflow, reservoir water level, and storage as well as hydraulicity indices of three main dams in CĂ´te d'Ivoire, namely Kossou and Taabo in the Bandama basin and Buyo in the Sassandra basin were examined during 1981-2017 and their impacts on hydropower generation were analyzed. Moreover, the hydropower generation sensitivity to CC of these dams was assessed using statistical analysis. The results reveal that the inflow is highly dependent on rainfall while the water level is highly influenced by the outflow, which is a function of the inflow to the reservoirs and water management policy. Furthermore, the Mann Kendall test revealed that temperature and potential evapotranspiration have increased significantly in all three sub-basins while precipitation shows a significant upward trend only within the Taabo dam catchment area. Meanwhile, inflow to reservoir increased significantly and greatly than precipitation probably due to land use/cover change. Precipitation and inflow show a strong correlation as energy generation is significantly and strongly correlated to outflow (inflow) in all stations (except Kossou). Furthermore, the energy generation at Buyo and Taabo dams is more sensitive to reservoir inflow, while that of Kossou dam is more affected by water level. In addition, the power of a given year is also dependent on the total rainfall of that year and/or the previous year depending on the plant

    Technological advances in prospecting sites for pumped hydro energy storage

    No full text
    In Kabo-Bah, A. T.; Diawuo, F. A.; Antwi, E. O. (Eds.). Pumped hydro energy storage for hybrid systems. London, UK: Academic PressThis chapter provides a survey of pumped hydroelectric energy storage (PHES) in terms of the factors considered in the site selection process: geographic, social, economic, and environmental. Due to the number and complexity of factors considered for this purpose, a multicriteria decision-making model is often used during the selection process. From our study, it is observed that the implementation of a PHES project may come with several environmental concerns, that is land and water requirements, impacts on the fishery industry, aquatic habitat, cultural, historical as well as natural. However, we also observed that many of these concerns are being addressed with improvement in PHES technology

    Technological advances in prospecting sites for pumped hydro energy storage

    No full text
    This chapter provides a survey of pumped hydroelectric energy storage (PHES) in terms of the factors considered in the site selection process: geographic, social, economic, and environmental. Due to the number and complexity of factors considered for this purpose, a multicriteria decision-making model is often used during the selection process. From our study, it is observed that the implementation of a PHES project may come with several environmental concerns, that is land and water requirements, impacts on the fishery industry, aquatic habitat, cultural, historical as well as natural. However, we also observed that many of these concerns are being addressed with improvement in PHES technology

    Climate and extreme rainfall events in the Mono river basin (West Africa): investigating future changes with Regional Climate Models.

    No full text
    27 pagesInternational audienceThis study characterizes the future changes in extreme rainfall and air temperature in the Mono river basin where the main economic activity is weather dependent and local populations are highly vulnerable to natural hazards, including flood inundations. Daily precipitation and temperature from observational datasets and Regional Climate Models (RCMs) output from REMO, RegCM, HadRM3, and RCA were used to analyze climatic variations in space and time, and fit a GEV model to investigate the extreme rainfalls and their return periods. The results indicate that the realism of the simulated climate in this domain is mainly controlled by the choice of the RCMs. These RCMs projected a 1 to 1.5 °C temperature increase by 2050 while the projected trends for cumulated precipitation are null or very moderate and diverge among models. Contrasting results were obtained for the intense rainfall events, with RegCM and HadRM3 pointing to a significant increase in the intensity of extreme rainfall events. The GEV model is well suited for the prediction of heavy rainfall events although there are uncertainties beyond the 90th percentile. The annual maxima of daily precipitation will also increase by 2050 and could be of benefit to the ecosystem services and socioeconomic activities in the Mono river basin but could also be a threat

    Using the CHIRPS dataset to investigate historical changes in precipitation extremes in West Africa

    No full text
    This study aims to provide improved knowledge and evidence on current (1986-2015) climate variation based on six rainfall indices over five West African countries (Senegal, Niger, Burkina Faso, Ivory Coast, and Benin) using the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) dataset. On average, precipitation has increased over the central Sahel and the western Sahel. This increase is associated with increase in the number of rainy days, longer wet spells and shorter dry spells. Over the Guinea Coast, the slight increase in precipitation is associated with an increase in the intensity of rainfall with a shorter duration of wet spells. However, these mean changes in precipitation are not all statistically significant and uniform within a country. While previous studies are focused on regional and sub-regional scales, this study contributes to deliver a climate information at a country level that is more relevant for decision making and for policy makers, and to document climate-related risks within a country to feed impact studies in key sectors of the development, such as agriculture and water resources
    corecore