44 research outputs found

    Deep Learning for Relevance Filtering in Syndromic Surveillance: A Case Study in Asthma/Difficulty Breathing

    Get PDF
    In this paper, we investigate deep learning methods that may extract some word context for Twitter mining for syndromic surveillance. Most of the work on syndromic surveillance has been done on the flu or Influenza- Like Illnesses (ILIs). For this reason, we decided to look at a different but equally important syndrome, asthma/difficulty breathing, as this is quite topical given global concerns about the impact of air pollution. We also compare deep learning algorithms for the purpose of filtering Tweets relevant to our syndrome of interest, asthma/difficulty breathing. We make our comparisons using different variants of the F-measure as our evaluation metric because they allow us to emphasise recall over precision, which is important in the context of syndromic surveillance so that we do not lose relevant Tweets in the classification. We then apply our relevance filtering systems based on deep learning algorithms, to the task of syndromic surveillance and compare the results with real-world syndromic surveillance data provided by Public Health England (PHE).We find that the RNN performs best at relevance filtering but can also be slower than other architectures which is important for consideration in real-time application. We also found that the correlation between Twitter and the real-world asthma syndromic surveillance data was positive and improved with the use of the deep- learning-powered relevance filtering. Finally, the deep learning methods enabled us to gather context and word similarity information which we can use to fine tune the vocabulary we employ to extract relevant Tweets in the first place

    Twitter mining using semi-supervised classification for relevance filtering in syndromic surveillance

    Get PDF
    We investigate the use of Twitter data to deliver signals for syndromic surveillance in order to assess its ability to augment existing syndromic surveillance efforts and give a better understanding of symptomatic people who do not seek healthcare advice directly. We focus on a specific syndrome—asthma/difficulty breathing. We outline data collection using the Twitter streaming API as well as analysis and pre-processing of the collected data. Even with keyword-based data collection, many of the tweets collected are not be relevant because they represent chatter, or talk of awareness instead of an individual suffering a particular condition. In light of this, we set out to identify relevant tweets to collect a strong and reliable signal. For this, we investigate text classification techniques, and in particular we focus on semi-supervised classification techniques since they enable us to use more of the Twitter data collected while only doing very minimal labelling. In this paper, we propose a semi-supervised approach to symptomatic tweet classification and relevance filtering. We also propose alternative techniques to popular deep learning approaches. Additionally, we highlight the use of emojis and other special features capturing the tweet’s tone to improve the classification performance. Our results show that negative emojis and those that denote laughter provide the best classification performance in conjunction with a simple word-level n-gram approach. We obtain good performance in classifying symptomatic tweets with both supervised and semi-supervised algorithms and found that the proposed semi-supervised algorithms preserve more of the relevant tweets and may be advantageous in the context of a weak signal. Finally, we found some correlation (r = 0.414, p = 0.0004) between the Twitter signal generated with the semi-supervised system and data from consultations for related health conditions

    A scoping review of the use of Twitter for public health research

    Get PDF
    Public health practitioners and researchers have used traditional medical databases to study and understand public health for a long time. Recently, social media data, particularly Twitter, has seen some use for public health purposes. Every large technological development in history has had an impact on the behaviour of society. The advent of the internet and social media is no different. Social media creates public streams of communication, and scientists are starting to understand that such data can provide some level of access into the people’s opinions and situations. As such, this paper aims to review and synthesize the literature on Twitter applications for public health, highlighting current re- search and products in practice. A scoping review methodology was employed and four leading health, computer science and cross-disciplinary databases were searched. A total of 755 articles were retreived, 92 of which met the criteria for review. From the reviewed literature, six domains for the application of Twit- ter to public health were identified: (i) Surveillance; (ii) Event Detection; (iii) Pharmacovigilance; (iv) Forecasting; (v) Disease Tracking; and (vi) Geographic Identification. From our review, we were able to obtain a clear picture of the use of Twitter for public health. We gained insights into interesting observa- tions such as how the popularity of different domains changed with time, the diseases and conditions studied and the different approaches to understanding each disease, which algorithms and techniques were popular with each domain, and more

    Developing a multidisciplinary syndromic surveillance academic research programme in the United Kingdom: benefits for public health surveillance

    Get PDF
    Syndromic surveillance is growing in stature internationally as a recognised and innovative approach to public health surveillance. Syndromic surveillance research uses data captured by syndromic surveillance systems to investigate specific hypotheses or questions. However, this research is often undertaken either within established public health organisations or the academic setting, but often not together. Public health organisations can provide access to health-related data and expertise in infectious and non-infectious disease epidemiology and clinical interpretation of data. Academic institutions can optimise methodological rigour, intellectual clarity and establish routes for applying to external research funding bodies to attract money to fund projects. Together, these competencies can complement each other to enhance the public health benefits of syndromic surveillance research. This paper describes the development of a multidisciplinary syndromic surveillance academic research programme in England, United Kingdom, its aims, goals and benefits to public health

    Syndromic surveillance: two decades experience of sustainable systems – its people not just data!

    Get PDF
    Syndromic surveillance is a form of surveillance that generates information for public health action by collecting, analysing and interpreting routine health-related data on symptoms and clinical signs reported by patients and clinicians rather than being based on microbiologically or clinically confirmed cases. In England, a suite of national real-time syndromic surveillance systems (SSS) have been developed over the last 20 years, utilising data from a variety of health care settings (a telehealth triage system, general practice and emergency departments). The real-time systems in England have been used for early detection (e.g. seasonal influenza), for situational awareness (e.g. describing the size and demographics of the impact of a heatwave) and for reassurance of lack of impact on population health of mass gatherings (e.g. the London 2012 Olympic and Paralympic Games).We highlight the lessons learnt from running SSS, for nearly two decades, and propose questions and issues still to be addressed. We feel that syndromic surveillance is an example of the use of ‘big data’, but contend that the focus for sustainable and useful systems should be on the added value of such systems and the importance of people working together to maximise the value for the public health of syndromic surveillance services

    Environmental factors associated with general practitioner consultations for allergic rhinitis in London, England: a retrospective time series analysis

    Get PDF
    Objectives: To identify key predictors of general practitioner (GP) consultations for allergic rhinitis (AR) using meteorological and environmental data. Design: A retrospective, time series analysis of GP consultations for AR. Setting: A large GP surveillance network of GP practices in the London area. Participants: The study population was all persons who presented to general practices in London that report to the Public Health England GP in-hours syndromic surveillance system during the study period (3 April 2012 to 11 August 2014). Primary measure: Consultations for AR (numbers of consultations). Results: During the study period there were 186 401 GP consultations for AR. High grass and nettle pollen counts (combined) were associated with the highest increases in consultations (for the category 216-270 grains/m3, relative risk (RR) 3.33, 95% CI 2.69 to 4.12) followed by high tree (oak, birch and plane combined) pollen counts (for the category 260–325 grains/m3, RR 1.69, 95% CI 1.32 to 2.15) and average daily temperatures between 15°C and 20°C (RR 1.47, 95% CI 1.20 to 1.81). Higher levels of nitrogen dioxide (NO2) appeared to be associated with increased consultations (for the category 70–85 µg/m3, RR 1.33, 95% CI 1.03 to 1.71), but a significant effect was not found with ozone. Higher daily rainfall was associated with fewer consultations (15–20 mm/day; RR 0.812, 95% CI 0.674 to 0.980). Conclusions: Changes in grass, nettle or tree pollen counts, temperatures between 15°C and 20°C, and (to a lesser extent) NO2 concentrations were found to be associated with increased consultations for AR. Rainfall has a negative effect. In the context of climate change and continued exposures to environmental air pollution, intelligent use of these data will aid targeting public health messages and plan healthcare demand

    Limiting worker exposure to highly pathogenic avian influenza a (H5N1): a repeat survey at a rendering plant processing infected poultry carcasses in the UK

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current occupational and public health guidance does not distinguish between rendering plant workers and cullers/poultry workers in terms of infection risk in their respective roles during highly pathogenic avian influenza poultry outbreaks. We describe an operational approach to human health risk assessment decision making at a large rendering plant processing poultry carcasses stemming from two separate highly pathogenic avian influenza A (H5N1) outbreaks in England during 2007.</p> <p>Methods</p> <p>During the first incident a uniform approach assigned equal exposure risk to all rendering workers in or near the production line. A task based exposure assessment approach was adopted during the second incident based on a hierarchy of occupational activities and potential for infection exposure. Workers assessed as being at risk of infection were offered personal protective equipment; pre-exposure antiviral prophylaxis; seasonal influenza immunisation; hygiene advice; and health monitoring. A repeat survey design was employed to compare the two risk assessment approaches, with allocation of antiviral prophylaxis as the main outcome variable.</p> <p>Results</p> <p>Task based exposure assessment during the second incident reduced the number of workers assessed at risk of infection from 72 to 55 (24% reduction) when compared to the first incident. No cases of influenza like illness were reported in workers during both incidents.</p> <p>Conclusions</p> <p>Task based exposure assessment informs a proportionate public health response in rendering plant workers during highly pathogenic avian influenza H5N1 outbreaks, and reduces reliance on extensive antiviral prophylaxis.</p

    Strategies for controlling non-transmissible infection outbreaks using a large human movement data set

    Get PDF
    Prediction and control of the spread of infectious disease in human populations benefits greatly from our growing capacity to quantify human movement behavior. Here we develop a mathematical model for non-transmissible infections contracted from a localized environmental source, informed by a detailed description of movement patterns of the population of Great Britain. The model is applied to outbreaks of Legionnaires' disease, a potentially life-threatening form of pneumonia caused by the bacteria Legionella pneumophilia. We use case-report data from three recent outbreaks that have occurred in Great Britain where the source has already been identified by public health agencies. We first demonstrate that the amount of individual-level heterogeneity incorporated in the movement data greatly influences our ability to predict the source location. The most accurate predictions were obtained using reported travel histories to describe movements of infected individuals, but using detailed simulation models to estimate movement patterns offers an effective fast alternative. Secondly, once the source is identified, we show that our model can be used to accurately determine the population likely to have been exposed to the pathogen, and hence predict the residential locations of infected individuals. The results give rise to an effective control strategy that can be implemented rapidly in response to an outbreak
    corecore