1,366 research outputs found
Magnetic and Structural Studies of the Quasi-Two-Dimensional Spin-Gap System (CuCl)LaNb2O7
We report magnetization, nuclear magnetic resonance (NMR), nuclear quadrupole
resonance (NQR), and transmission electron microscopy (TEM) studies on the
quasi-two-dimensional spin-gap system (CuCl)LaNb2O7, a possible candidate for
the J1-J2 model on a square lattice. A sharp single NQR line is observed at the
Cu and Cl sites, indicating that both Cu and Cl atoms occupy a unique site.
However, the electric field gradient tensors at the Cu, Cl, and La sites do not
have axial symmetry. This is incompatible with the reported crystal structure.
Thus the J1-J2 model has to be modified. We propose alternative two-dimensional
dimer models based on the NMR, NQR, and TEM results. The value of the hyperfine
coupling constant at the Cu sites indicates that the spin density is mainly on
the d(3z2-r2) orbital (z parallel c). At 1.5 K, Cu- and Nb-NMR signals
disappear above the critical field Bc1 = 10.3 T determined from the onset of
the magnetization, indicating a field-induced magnetic phase transition at Bc1.Comment: 9 pages, 16 figure
Solar polarimetry through the K I lines at 770 nm
We characterize the K I D1 & D2 lines in order to determine whether they
could complement the 850 nm window, containing the Ca II infrared triplet lines
and several Zeeman sensitive photospheric lines, that was studied previously.
We investigate the effect of partial redistribution on the intensity profiles,
their sensitivity to changes in different atmospheric parameters, and the
spatial distribution of Zeeman polarization signals employing a realistic
magnetohydrodynamic simulation. The results show that these lines form in the
upper photosphere at around 500 km and that they are sensitive to the line of
sight velocity and magnetic field strength at heights where neither the
photospheric lines nor the Ca II infrared lines are. However, at the same time,
we found that their sensitivity to the temperature essentially comes from the
photosphere. Then, we conclude that the K I lines provide a complement to the
lines in the 850 nm window for the determination of atmospheric parameters in
the upper photosphere, especially for the line of sight velocity and the
magnetic field.Comment: 10 pages, 9 figures, main journal publicatio
Study of the polarization produced by the Zeeman effect in the solar Mg I b lines
The next generation of solar observatories aim to understand the magnetism of
the solar chromosphere. Therefore, it is crucial to understand the polarimetric
signatures of chromospheric spectral lines. For this purpose, we here examine
the suitability of the three Fraunhofer Mg I b1, b2, and b4 lines at 5183.6,
5172.7, and 5167.3 A, respectively. We start by describing a simplified atomic
model of only 6 levels and 3 line transitions for computing the atomic
populations of the 3p-4s (multiplet number 2) levels involved in the Mg I b
line transitions assuming non-local thermodynamic conditions and considering
only the Zeeman effect using the field-free approximation. We test this
simplified atom against more complex ones finding that, although there are
differences in the computed profiles, they are small compared with the
advantages provided by the simple atom in terms of speed and robustness. After
comparing the three Mg I lines, we conclude that the most capable one is the b2
line as b1 forms at similar heights and always show weaker polarization signals
while b4 is severely blended with photospheric lines. We also compare Mg I b2
with the K I D1 and Ca II 8542 A lines finding that the former is sensitive to
the atmospheric parameters at heights that are in between those covered by the
latter two lines. This makes Mg I b2 an excellent candidate for future
multi-line observations that aim to seamlessly infer the thermal and magnetic
properties of different features in the lower solar atmosphere.Comment: 14 pages, 11 figures, and 5 table
Measurement of neutron diffraction with compact neutron source RANS
Diffraction is used as a measurement technique for crystal structure. X-rays or electron beam with wavelength that is close to the lattice constant of the crystal is often used for the measurement. They have sensitivity in surface
(0.01mm) of heavy metals due to the mean free path for heavy ions. Neutron diffraction has the probe of the internal structure of the heavy metals because it has a
longer mean free path than that of the X-rays or the electrons. However, the neutron diffraction measurement is not widely used because large facilities are required in the many neutron sources. RANS (Riken Accelerator-driven Compact Neutron Source) is developed as a neutron source which is usable easily in laboratories and factories. In RANS, fast neutrons are generated by 7MeV protons colliding on a Be target. Some fast neutrons are moderated with polyethylene to thermal neutrons. The thermal neutrons of 10meV which have wavelength of 10nm can be used for the
diffraction measurement. In this study, the texture evolution in steels was measured with RANS and the validity of the compact neutron source was proved. The texture of IF steel sheets with the thickness of 1.0mm was measured with 10minutes run. The resolution is 2% and is enough to analyze a evolution in texture due to compression/tensile deformation or a volume fraction of two phases in the steel sample. These results have proven the possibility to use compact neutron source for the analysis of mesoscopic structure of metallic materials
Chromospheric polarimetry through multi-line observations of the 850 nm spectral region III: Chromospheric jets driven by twisted magnetic fields
We investigate the diagnostic potential of the spectral lines at 850 nm for
understanding the magnetism of the lower atmosphere. For that purpose, we use a
newly developed 3D simulation of a chromospheric jet to check the sensitivity
of the spectral lines to this phenomenon as well as our ability to infer the
atmospheric information through spectropolarimetric inversions of noisy
synthetic data. We start comparing the benefits of inverting the entire
spectrum at 850 nm versus only the Ca II 8542 A spectral line. We found a
better match of the input atmosphere for the former case, mainly at lower
heights. However, the results at higher layers were not accurate. After several
tests, we determined that we need to weight more the chromospheric lines than
the photospheric ones in the computation of the goodness of the fit. The new
inversion configuration allows us to obtain better fits and consequently more
accurate physical parameters. Therefore, to extract the most from multi-line
inversions, a proper set of weights needs to be estimated. Besides that, we
conclude again that the lines at 850 nm, or a similar arrangement with Ca II
8542 A plus Zeeman sensitive photospheric lines, poses the best observing
configuration for examining the thermal and magnetic properties of the lower
solar atmosphere.Comment: 14 pages, 11 figure
Water formation at low temperatures by surface O2 hydrogenation II: the reaction network
Water is abundantly present in the Universe. It is the main component of
interstellar ice mantles and a key ingredient for life. Water in space is
mainly formed through surface reactions. Three formation routes have been
proposed in the past: hydrogenation of surface O, O2, and O3. In a previous
paper [Ioppolo et al., Astrophys. J., 2008, 686, 1474] we discussed an
unexpected non-standard zeroth-order H2O2 production behaviour in O2
hydrogenation experiments, which suggests that the proposed reaction network is
not complete, and that the reaction channels are probably more interconnected
than previously thought. In this paper we aim to derive the full reaction
scheme for O2 surface hydrogenation and to constrain the rates of the
individual reactions. This is achieved through simultaneous H-atom and O2
deposition under ultra-high vacuum conditions for astronomically relevant
temperatures. Different H/O2 ratios are used to trace different stages in the
hydrogenation network. The chemical changes in the forming ice are followed by
means of reflection absorption infrared spectroscopy (RAIRS). New reaction
paths are revealed as compared to previous experiments. Several reaction steps
prove to be much more efficient (H + O2) or less efficient (H + OH and H2 + OH)
than originally thought. These are the main conclusions of this work and the
extended network concluded here will have profound implications for models that
describe the formation of water in space.Comment: 1 page, 1 figur
Water formation at low temperatures by surface O2 hydrogenation I: characterization of ice penetration
Water is the main component of interstellar ice mantles, is abundant in the
solar system and is a crucial ingredient for life. The formation of this
molecule in the interstellar medium cannot be explained by gas-phase chemistry
only and its surface hydrogenation formation routes at low temperatures (O, O2,
O3 channels) are still unclear and most likely incomplete. In a previous paper
we discussed an unexpected zeroth-order H2O production behavior in O2 ice
hydrogenation experiments compared to the first-order H2CO and CH3OH production
behavior found in former studies on hydrogenation of CO ice. In this paper we
experimentally investigate in detail how the structure of O2 ice leads to this
rare behavior in reaction order and production yield. In our experiments H
atoms are added to a thick O2 ice under fully controlled conditions, while the
changes are followed by means of reflection absorption infrared spectroscopy
(RAIRS). The H-atom penetration mechanism is systematically studied by varying
the temperature, thickness and structure of the O2 ice. We conclude that the
competition between reaction and diffusion of the H atoms into the O2 ice
explains the unexpected H2O and H2O2 formation behavior. In addition, we show
that the proposed O2 hydrogenation scheme is incomplete, suggesting that
additional surface reactions should be considered. Indeed, the detection of
newly formed O3 in the ice upon H-atom exposure proves that the O2 channel is
not an isolated route. Furthermore, the addition of H2 molecules is found not
to have a measurable effect on the O2 reaction channel.Comment: 1 page, 1 figur
- …