66 research outputs found

    Gamma-ray burst optical light-curve zoo: comparison with X-ray observations

    Full text link
    We present a comprehensive analysis of the optical and X-ray light curves (LCs) and spectral energy distributions (SEDs) of a large sample of gamma-ray burst (GRB) afterglows to investigate the relationship between the optical and X-ray emission after the prompt phase. We collected the optical data from the literature and determined the shapes of the optical LCs. Then, using previously presented X-ray data we modeled the optical/X-ray SEDs. We studied the SED parameter distributions and compared the optical and X-ray LC slopes and shapes. The optical and X-ray spectra become softer as a function of time while the gas-to-dust ratios of GRBs are higher than the values calculated for the Milky Way and the Large and Magellanic Clouds. For 20% of the GRBs the difference between the optical and X-ray slopes is consistent with 0 or 1=4 within the uncertainties (we did it not consider the steep decay phase), while in the remaining 80% the optical and X-ray afterglows show significantly different temporal behaviors. Interestingly, we find an indication that the onset of the forward shock in the optical LCs (initial peaks or shallow phases) could be linked to the presence of the X-ray flares. Indeed, when X-ray flares are present during the steep decay, the optical LC initial peak or end plateau occurs during the steep decay; if instead the X-ray flares are absent or occur during the plateau, the optical initial peak or end plateau takes place during the X-ray plateau. The forward-shock model cannot explain all features of the optical (e.g. bumps, late re-brightenings) and X-ray (e.g. flares, plateaus) LCs. However, the synchrotron model is a viable mechanism for GRBs at late times. In particular, we found a relationship between the presence of the X-ray flares and the shape of the optical LC that indicates a link between the prompt emission and the optical afterglow.Comment: 55 pages, 37 figures, accepted for publication in A&A (this version includes changes made at Proofs stage

    Working Collaboratively to Fully Integrate Our Campuses

    Get PDF
    This project would be one dimension of a larger initiative to fully integrate the campuses. The idea is to establish a program to link the campuses through networking opportunities where faculty, staff and students are encouraged to develop friendships throughout the two campuses. The project would be launched on a select key date; i.e., anniversary date of VCU (or other important date), by the formation of a human chain connecting the two campuses between Broad and Belvidere Streets and Sanger Hall, about 1.2 miles of people committed to the cause. This would be a major campaign for VCU with the potential for positive visibility. (The campaign would be an important marker in the history of VCU’s progress and require senior level commitment for program development and funding for memorabilia (t-shirts, lanyards, etc.) and the cost of marketing. (Of important note is the fact that the team would also be tasked with defining the context of friendship in this project. Further, the group would want to explore friendship is the outcome of the project that fosters integration/connections between the people on the two campuses.

    A Large Catalog of Homogeneous Ultra-Violet/Optical GRB Afterglows: Temporal and Spectral Evolution

    Get PDF
    We present the second Swift Ultra-Violet/Optical Telescope (UVOT) gamma-ray burst (GRB) afterglow catalog, greatly expanding on the first Swift UVOT GRB afterglow catalog. The second catalog is constructed from a database containing over 120,000 independent UVOT observations of 538 GRBs first detected by Swift, the High Energy Transient Explorer 2 (HETE2), the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), the Interplanetary Network (IPN), Fermi, and Astro-rivelatore Gamma a Immagini Leggero (AGILE). The catalog covers GRBs discovered from 2005 Jan 17 to 2010 Dec 25. Using photometric information in three UV bands, three optical bands, and a `white' or open filter, the data are optimally co-added to maximize the number of detections and normalized to one band to provide a detailed light curve. The catalog provides positional, temporal, and photometric information for each burst, as well as Swift Burst Alert Telescope (BAT) and X-Ray Telescope (XRT) GRB parameters. Temporal slopes are provided for each UVOT filter. The temporal slope per filter of almost half the GRBs are fit with a single power-law, but one to three breaks are required in the remaining bursts. Morphological comparisons with the X-ray reveal that approximately 75% of the UVOT light curves are similar to one of the four morphologies identified by Evans et al. (2009). The remaining approximately 25% have a newly identified morphology. For many bursts, redshift and extinction corrected UV/optical spectral slopes are also provided at 2000, 20,000, and 200,000 seconds.Comment: 44 pages, 14 figures, to be published in Astrophysical Journal Supplementa

    A decade of GRB follow-up by BOOTES in Spain (2003-2013)

    Get PDF
    This article covers ten years of GRB follow-ups by the Spanish BOOTES stations: 71 follow-ups providing 23 detections. Follow-ups by BOOTES-1B from 2005 to 2008 were given in the previous article, and are here reviewed, updated, and include additional detection data points as the former article merely stated their existence. The all-sky cameras CASSANDRA have not yet detected any GRB optical afterglows, but limits are reported where available

    Case report: Adult-onset limb girdle muscular dystrophy in sibling pair due to novel homozygous LAMA2 missense variant

    Get PDF
    Recessive pathogenic variants in the laminin subunit alpha 2 (LAMA2) gene cause a spectrum of disease ranging from severe congenital muscular dystrophy to later-onset limb girdle muscular dystrophy (LGMDR23). The phenotype of LGMDR23 is characterized by slowly progressive proximal limb weakness, contractures, raised creatine kinase, and sometimes distinctive cerebral white matter changes and/or epilepsy. We present two siblings, born to consanguineous parents, who developed adult-onset LGMDR23 associated with typical cerebral white matter changes and who both later developed dementia. The male proband also had epilepsy and upper motor neuron signs when he presented at age 72. Merosin immunohistochemistry and Western blot on muscle biopsies taken from both subjects was normal. Whole exome sequencing revealed a previously unreported homozygous missense variant in LAMA2 [Chr6(GRCh38):g.129297734G>A; NM_000426.3:c.2906G>A; p.(Cys969Tyr)] in the proband. The same homozygous LAMA2 variant was confirmed by Sanger sequencing in the proband's affected sister. These findings expand the genotypic and phenotypic spectrum of LGMDR23

    A Reemerging Bright Soft X-Ray State of the Changing-look Active Galactic Nucleus 1ES 1927+654:A Multiwavelength View

    Get PDF
    1ES1927+654 is a nearby active galactic nucleus (AGN) that has shown an enigmatic outburst in optical/UV followed by X-rays, exhibiting strange variability patterns at timescales of months to years. Here we report the unusual X-ray, UV, and radio variability of the source in its postflare state (2022 January–2023 May). First, we detect an increase in the soft X-ray (0.3–2 keV) flux from 2022 May to 2023 May by almost a factor of 5, which we call the bright soft state. The hard X-ray 2–10 keV flux increased by a factor of 2, while the UV flux density did not show any significant changes (≤30%) in the same period. The integrated energy pumped into the soft and hard X-rays during this period of 11 months is ∼3.57 × 10 ^50 erg and 5.9 × 10 ^49 erg, respectively. From the energetics, it is evident that whatever is producing the soft excess (SE) is pumping out more energy than either the UV or hard X-ray source. Since the energy source presumably is ultimately the accretion of matter onto the supermassive black hole, the SE-emitting region must be receiving the majority of this energy. In addition, the source does not follow the typical disk–corona relation found in AGNs, neither in the initial flare (from 2017 to 2019) nor in the current bright soft state (2022–2023). We found that the core (<1 pc) radio emission at 5 GHz gradually increased until 2022 March, but showed a dip in 2022 August. The Güdel–Benz relation ( L _radio / L _X-ray ∼ 10 ^−5 ), however, is still within the expected range for radio-quiet AGNs, and further follow-up radio observations are currently being undertaken

    Efficiency and safety of varying the frequency of whole blood donation (INTERVAL): a randomised trial of 45 000 donors

    Get PDF
    Background: Limits on the frequency of whole blood donation exist primarily to safeguard donor health. However, there is substantial variation across blood services in the maximum frequency of donations allowed. We compared standard practice in the UK with shorter inter-donation intervals used in other countries. Methods: In this parallel group, pragmatic, randomised trial, we recruited whole blood donors aged 18 years or older from 25 centres across England, UK. By use of a computer-based algorithm, men were randomly assigned (1:1:1) to 12-week (standard) versus 10-week versus 8-week inter-donation intervals, and women were randomly assigned (1:1:1) to 16-week (standard) versus 14-week versus 12-week intervals. Participants were not masked to their allocated intervention group. The primary outcome was the number of donations over 2 years. Secondary outcomes related to safety were quality of life, symptoms potentially related to donation, physical activity, cognitive function, haemoglobin and ferritin concentrations, and deferrals because of low haemoglobin. This trial is registered with ISRCTN, number ISRCTN24760606, and is ongoing but no longer recruiting participants. Findings: 45 263 whole blood donors (22 466 men, 22 797 women) were recruited between June 11, 2012, and June 15, 2014. Data were analysed for 45 042 (99·5%) participants. Men were randomly assigned to the 12-week (n=7452) versus 10-week (n=7449) versus 8-week (n=7456) groups; and women to the 16-week (n=7550) versus 14-week (n=7567) versus 12-week (n=7568) groups. In men, compared with the 12-week group, the mean amount of blood collected per donor over 2 years increased by 1·69 units (95% CI 1·59–1·80; approximately 795 mL) in the 8-week group and by 0·79 units (0·69–0·88; approximately 370 mL) in the 10-week group (p&lt;0·0001 for both). In women, compared with the 16-week group, it increased by 0·84 units (95% CI 0·76–0·91; approximately 395 mL) in the 12-week group and by 0·46 units (0·39–0·53; approximately 215 mL) in the 14-week group (p&lt;0·0001 for both). No significant differences were observed in quality of life, physical activity, or cognitive function across randomised groups. However, more frequent donation resulted in more donation-related symptoms (eg, tiredness, breathlessness, feeling faint, dizziness, and restless legs, especially among men [for all listed symptoms]), lower mean haemoglobin and ferritin concentrations, and more deferrals for low haemoglobin (p&lt;0·0001 for each) than those observed in the standard frequency groups. Interpretation: Over 2 years, more frequent donation than is standard practice in the UK collected substantially more blood without having a major effect on donors' quality of life, physical activity, or cognitive function, but resulted in more donation-related symptoms, deferrals, and iron deficiency. Funding: NHS Blood and Transplant, National Institute for Health Research, UK Medical Research Council, and British Heart Foundation

    GRB 130831a: Rise and demise of a magnetar at z = 0.5

    Get PDF
    Open Access.--14th Marcel Grossman Meeting On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories; University of Rome "La Sapienza"Rome; Italy; 12 July 2015 through 18 July 2015; Code 142474.-- http://www.icra.it/mg/mg14/Gamma-ray bursts (GRBs) are the brightest explosions in the universe, yet the properties of their energy sources are far from understood. Very important clues, however, can be deduced by studying the afterglows of these events. We present observations of GRB 130831A and its afterglow obtained with Swift, Chandra, and multiple ground-based observatories. This burst shows an uncommon drop in the X-ray light curve at about 100 ks after the trigger, with a decay slope of α 7. The standard Forward Shock (FS) model offers no explanation for such a behaviour. Instead, a model in which a newly born magnetar outflow powers the early X-ray emission is found to be viable. After the drop, the X-ray afterglow resumes its decay with a slope typical of FS emission. The optical emission, on the other hand, displays no clear break across the X-ray drop and its decay is consistent with that of the late X-rays. Using both the X-ray and optical data, we show that the FS model can explain the emission after 100 ks. We model our data to infer the kinetic energy of the ejecta and thus estimate the efficiency of a magnetar “central engine” of a GRB. Furthermore, we break down the energy budget of this GRB into prompt emission, late internal dissipation, kinetic energy of the relativistic ejecta, and compare it with the energy of the accompanying supernova, SN 2013fu. Copyright © 2018 by the Editors.All rights reserved.Peer reviewe
    corecore