195 research outputs found

    Skyrmions in quantum Hall ferromagnets as spin-waves bound to unbalanced magnetic flux quanta

    Full text link
    A microscopic description of (baby)skyrmions in quantum Hall ferromagnets is derived from a scattering theory of collective (neutral) spin modes by a bare quasiparticle. We start by mapping the low lying spectrum of spin waves in the uniform ferromagnet onto that of free moving spin excitons, and then we study their scattering by the defect of charge. In the presence of this disturbance, the local spin stiffness varies in space, and we translate it into an inhomogeneus metric in the Hilbert space supporting the excitons. An attractive potencial is then required to preserve the symmetry under global spin rotations, and it traps the excitons around the charged defect. The quasiparticle now carries a spin texture. Textures containing more than one exciton are described within a mean-field theory, the interaction among the excitons being taken into account through a new renormalization of the metric. The number of excitons actually bound depends on the Zeeman coupling, that plays the same role as a chemical potencial. For small Zeeman energies, the defect binds many excitons which condensate. As the bound excitons have a unit of angular momentum, provided by the quantum of magnetic flux left unbalanced by the defect of charge, the resulting texture turns out to be a topological excitation of charge 1. Its energy is that given by the non-linear sigma model for the ground state in this topological sector, i.e. the texture is a skyrmion.Comment: 17 pages, 1 figur

    Kondo effect in multielectron quantum dots at high magnetic fields

    Full text link
    We present a general description of low temperature transport through a quantum dot with any number of electrons at filling factor 1<ν<21<\nu <2. We provide a general description of a novel Kondo effect which is turned on by application of an appropriate magnetic field. The spin-flip scattering of carriers by the quantum dot only involves two states of the scatterer which may have a large spin. This process is described by spin-flip Hubbard operators, which change the angular momentum, leading to a Kondo Hamiltonian. We obtain antiferromagnetic exchange couplings depending on tunneling amplitudes and correlation effects. Since Kondo temperature has an exponential dependence on exchange couplings, quantitative variations of the parameters in different regimes have important experimental consequences. In particular, we discuss the {\it chess board} aspect of the experimental conductance when represented in a grey scale as a function of both the magnetic field and the gate potential affecting the quantum dot

    Classical paths in systems of fermions

    Full text link
    We implement in systems of fermions the formalism of pseudoclassical paths that we recently developed for systems of bosons and show that quantum states of fermionic fields can be described, in the Heisenberg picture, as linear combinations of randomly distributed paths that do not interfere between themselves and obey classical Dirac equations. Every physical observable is assigned a time-dependent value on each path in a way that respects the anticommutative algebra between quantum operators and we observe that these values on paths do not necessarily satisfy the usual algebraic relations between classical observables. We use these pseudoclassical paths to define the dynamics of quantum fluctuations in systems of fermions and show that, as we found for systems of bosons, the dynamics of fluctuations of a wide class of observables that we call "collective" observables can be approximately described in terms of classical stochastic concepts. Finally, we apply this formalism to describe the dynamics of local fluctuations of globally conserved fermion numbers.Comment: to appear in Pys. Rev.

    Edge Theories for Polarized Quantum Hall States

    Full text link
    Starting from recently proposed bosonic mean field theories for fully and partially polarized quantum Hall states, we construct corresponding effective low energy theories for the edge modes. The requirements of gauge symmetry and invariance under global O(3) spin rotations, broken only by a Zeeman coupling, imply boundary conditions that allow for edge spin waves. In the generic case, these modes are chiral, and the spin stiffness differs from that in the bulk. For the case of a fully polarized ν=1\nu=1 state, our results agree with previous Hartree-Fock calculations.Comment: 15 pages (number of pages has been reduced by typesetting in RevTeX); 2 references adde

    Top-bottom doublet in the sphaleron background

    Get PDF
    We consider the top-bottom doublet in the background of the sphaleron for the realistic case of large non-degeneracy of fermion masses, in particular mb=5m_b=5 GeV and mt=175m_t=175 GeV. We propose an axially symmetric (r,θ)(r,\theta)-dependent ansatz for fermion fields and investigate the effects of the non-degeneracy on them. The exact solution is described, with an error less than 0.01\%, by a set of ten radial functions. We also propose an approximate solution, in the mb/mt→0m_b/m_t\rightarrow 0 limit, with an error O(mb/mt){\cal O}(m_b/m_t). We have found that the effects of non-degeneracy provide a θ\theta-dependence typically ∼10%\sim 10\%.Comment: 12 pages, latex + psfig, 4 uuencoded figure

    Pushmepullyou: An efficient micro-swimmer

    Full text link
    The swimming of a pair of spherical bladders that change their volumes and mutual distance is efficient at low Reynolds numbers and is superior to other models of artificial swimmers. The change of shape resembles the wriggling motion known as {\it metaboly} of certain protozoa.Comment: Minor rephrasing and changes in style; short explanations adde

    Low energy excitations of double quantum dots in the lowest Landau level regime

    Get PDF
    We study the spectrum and magnetic properties of double quantum dots in the lowest Landau level for different values of the hopping and Zeeman parameters by means of exact diagonalization techniques in systems of N=6 and N=7 electrons and filling factor close to 2. We compare our results with those obtained in double quantum layers and single quantum dots. The Kohn theorem is also discussed.Comment: 23 pages, 4 figures, 1 table; references added; journal versio
    • …
    corecore