We implement in systems of fermions the formalism of pseudoclassical paths
that we recently developed for systems of bosons and show that quantum states
of fermionic fields can be described, in the Heisenberg picture, as linear
combinations of randomly distributed paths that do not interfere between
themselves and obey classical Dirac equations. Every physical observable is
assigned a time-dependent value on each path in a way that respects the
anticommutative algebra between quantum operators and we observe that these
values on paths do not necessarily satisfy the usual algebraic relations
between classical observables. We use these pseudoclassical paths to define the
dynamics of quantum fluctuations in systems of fermions and show that, as we
found for systems of bosons, the dynamics of fluctuations of a wide class of
observables that we call "collective" observables can be approximately
described in terms of classical stochastic concepts. Finally, we apply this
formalism to describe the dynamics of local fluctuations of globally conserved
fermion numbers.Comment: to appear in Pys. Rev.