1,349 research outputs found

    Benchmark Modeling of the Near-Field and Far-Field Wave Effects of Wave Energy Arrays

    Get PDF
    This project is an industry-led partnership between Columbia Power Technologies and Oregon State University that will perform benchmark laboratory experiments and numerical modeling of the near-field and far-field impacts of wave scattering from an array of wave energy devices. These benchmark experimental observations will help to fill a gaping hole in our present knowledge of the near-field effects of multiple, floating wave energy converters and are a critical requirement for estimating the potential far-field environmental effects of wave energy arrays. The experiments will be performed at the Hinsdale Wave Research Laboratory (Oregon State University) and will utilize an array of newly developed BuoysÃÂÃÂÃÂÃÂ that are realistic, lab-scale floating power converters. The array of Buoys will be subjected to realistic, directional wave forcing (1:33 scale) that will approximate the expected conditions (waves and water depths) to be found off the Central Oregon Coast. Experimental observations will include comprehensive in-situ wave and current measurements as well as a suite of novel optical measurements. These new optical capabilities will include imaging of the 3D wave scattering using a binocular stereo camera system, as well as 3D device motion tracking using a newly acquired LED system. These observing systems will capture the 3D motion history of individual Buoys as well as resolve the 3D scattered wave field; thus resolving the constructive and destructive wave interference patterns produced by the array at high resolution. These data combined with the device motion tracking will provide necessary information for array design in order to balance array performance with the mitigation of far-field impacts. As a benchmark data set, these data will be an important resource for testing of models for wave/buoy interactions, buoy performance, and far-field effects on wave and current patterns due to the presence of arrays. Under the proposed project we will initiate high-resolution (fine scale, very near-field) fluid/structure interaction simulations of buoy motions, as well as array-scale, phase-resolving wave scattering simulations. These modeling efforts will utilize state-of-the-art research quality models, which have not yet been brought to bear on this complex problem of large array wave/structure interaction problem

    Effects of pumping on entomopathogenic nematodes and temperature increase within a spray system

    Get PDF
    Exposure to hydrodynamic stresses and increased temperature during hydraulic agitation within a spray system could cause permanent damage to biological pesticides during spray application. Damage to a benchmark biopesticide, entomopathogenic nematodes (EPNs), was measured after a single passage through three different pump types (centrifugal, diaphragm, and roller) at operating pressures up to 828 kPa. No mechanical damage to the EPNs due to passage through the pumps was observed. Separate tests evaluated the effect of pump recirculation on temperature increase of water within a laboratory spray system (56.8-L spray tank) and a conventional-scale spray system (1136-L spray tank). A constant volume of water (45.4 L) was recirculated through each pump at 15.1 L/min within the laboratory spray system. After 2 h, the temperature increase for the centrifugal pump was 33.6 degrees C, and for the diaphragm and roller pumps was 8.5 degrees C and 11.2 degrees C, respectively. The centrifugal pump was also evaluated within the conventional spray system, under both a constant (757 L) and reducing volume scenario, resulting in an average temperature increase of 3.2 degrees C and 6.5 degrees C, respectively, during the 3-h test period. When comparing the number of recirculations for each test, the rate of temperature increase was the same for the conventional spray, system (for both the constant and reducing volume scenarios), while for the laboratory spray system the temperature increased at a greater rate, suggesting that the volume capacity of the spray tank is the primary factor influencing the temperature increase. Results from this study indicate that thermal influences during pump recirculation could be more detrimental to EPNs than mechanical stress. Results show that extensive recirculation of the tank mix can cause considerable increases in the liquid temperature. Diaphragm and roller pumps (low-capacity pumps) are better suited for use with biopesticides compared to the centrifugal pump, which was found to contribute significant heat to the spray system

    Triticum dicoccoides: an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat

    Get PDF
    One major strategy to increase the level of zinc (Zn) and iron (Fe) in cereal crops, is to exploit the natural genetic variation in seed concentration of these micronutrients. Genotypic variation for Zn and Fe concentration in seeds among cultivated wheat cultivars is relatively narrow and limits the options to breed wheat genotypes with high concentration and bioavailability of Zn and Fe in seed. Alternatively, wild wheat might be an important genetic resource for enhancing micronutrient concentrations in seeds of cultivated wheat. Wild wheat is widespread in diverse environments in Turkey and other parts of the Fertile Crescent (e.g., Iran, Iraq, Lebanon, Syria, Israel, and Jordan). A large number of accessions of wild wheat and of its wild relatives were collected from the Fertile Crescent and screened for Fe and Zn concentrations as well as other mineral nutrients. Among wild wheat, the collections of wild emmer wheat, Triticum turgidum ssp. dicoccoides (825 accessions) showed impressive variation and the highest concentrations of micronutrients, significantly exceeding those of cultivated wheat. The concentrations of Zn and Fe among the dicoccoides accessions varied from 14 to 190 mg kg(-1) DW for Zn and from 15 to 109 mg kg(-1) DW for Fe. Also for total amount of Zn and Fe per seed, dicoccoides accessions contained very high amount of Zn (up to 7 mug per seed) and Fe (up to 3.7 mug per seed). Such high genotypic variation could not be found for phosphorus, magnesium, and sulfur. In the case of modern cultivated wheat, seed concentrations of Zn and Fe were lower and less variable when compared to wild wheat accessions. There was a highly significant positive correlation between seed concentrations of Fe and Zn. Screening different series of dicoccoides substitution lines revealed that the chromosome 6A, 6B, and 5B of dicoccoides resulted in greater increase in Zn and Fe concentration when compared to their recipient parent and to other chromosome substitution lines. The results indicate that Triticum turgidum L. var. dicoccoides (wild emmer) is an important genetic resource for increasing concentration and content of Zn and Fe in modern cultivated wheat

    An improved method of supercharged transposed latissimus dorsi flap with the skin paddle for the management of a complicated lumbosacral defect

    Get PDF
    OBJECTIVE: Treatment of non-healing wounds of lower back often poses a powerful challenge. We present one of the first report of treatment of a lumbosacral defect with a supercharged latissimus dorsi flap with the skin paddle. CASE REPORT: We report a case of a 59 year-old man with myeloma of the sacral spine who underwent radiotherapy and chemotherapy and subsequently, laminectomies and placement of hardware for ongoing paresis and spine instability. Then, he developed an open wound and osteomyelitis of the spine with culture positive tuberculous granulomas. After multiple surgical debridement, he presented to our service and was treated with a single stage debridement followed by the performance of a latissimus dorsi musculocutaneous flap based on paraspinal perforators and supercharged. RESULTS: This solution, allowed for augmentation of blood flow to the muscle with the inferior gluteal artery, provided coverage of the defect resistant to the pressure, and simplified post-operative management of the patient. CONCLUSIONS: Alternative treatment options, including free tissue transfer, posed difficulties in finding suitable recipient vessels near the defect, in inserting the flap so as to restore its original length without compromising blood flow, and in postoperative care of the patient. Treatment of a lumbosacral defect with a supercharged latissimus dorsi flap with the skin paddle may represent a milestone procedure for complicated lower spine wounds

    The impact of the UK COVID-19 pandemic on patient-reported health outcomes after stroke: a retrospective sequential comparison

    Get PDF
    BACKGROUND AND PURPOSE: The COVID-19 pandemic and related social isolation measures are likely to have adverse consequences on community healthcare provision and outcome after acute illnesses treated in hospital, including stroke. We aimed to evaluate the impact of the COVID-19 pandemic on patient-reported health outcomes after hospital admission for acute stroke. METHODS: This retrospective study included adults with acute stroke admitted to the University College Hospital NHS Foundation Trust Hyperacute Stroke Unit. We included two separate cohorts of consecutively enrolled patients from the same geographical population at two time points: 16th March-16th May 2018 (pre-COVID-19 pandemic); and 16th March-16th May 2020 (during the COVID-19 pandemic). Patients in both cohorts completed the validated Patient Reported Outcomes Measurement Information System-29 (PROMIS-29 version 2.0) at 30 days after stroke. RESULTS: We included 205 patients who were alive at 30 days (106 admitted before and 99 admitted during the COVID-19 pandemic), of whom 201/205 (98%) provided patient-reported health outcomes. After adjustment for confounding factors, admission with acute stroke during the COVID-19 pandemic was independently associated with increased anxiety (β = 28.0, p < 0.001), fatigue (β = 9.3, p < 0.001), depression (β = 4.5, p = 0.002), sleep disturbance (β = 2.3, p = 0.018), pain interference (β = 10.8, p < 0.001); and reduced physical function (β = 5.2, p < 0.001) and participation in social roles and activities (β = 6.9, p < 0.001). CONCLUSION: Compared with the pre-pandemic cohort, patients admitted with acute stroke during the first wave of the COVID-19 pandemic reported poorer health outcomes at 30 day follow-up in all domains. Stroke service planning for any future pandemic should include measures to mitigate this major adverse impact on patient health

    Genomic prediction of grain yield in a barley MAGIC population modelling genotype per environment interaction

    Get PDF
    Multi-parent Advanced Generation Inter-crosses (MAGIC) lines have mosaic genomes that are generated shuffling the genetic material of the founder parents following predefined crossing schemes. In cereal crops, these experimental populations have been extensively used to investigate the genetic bases of several traits and dissect the genetic bases of epistasis. In plants, genomic prediction models are usually fitted using either diverse panels of mostly unrelated accessions or individuals of biparental families and several empirical analyses have been conducted to evaluate the predictive ability of models fitted to these populations using different traits. In this paper, we constructed, genotyped and evaluated a barley MAGIC population of 352 individuals developed with a diverse set of eight founder parents showing contrasting phenotypes for grain yield. We combined phenotypic and genotypic information of this MAGIC population to fit several genomic prediction models which were cross-validated to conduct empirical analyses aimed at examining the predictive ability of these models varying the sizes of training populations. Moreover, several methods to optimize the composition of the training population were also applied to this MAGIC population and cross-validated to estimate the resulting predictive ability. Finally, extensive phenotypic data generated in field trials organized across an ample range of water regimes and climatic conditions in the Mediterranean were used to fit and cross-validate multi-environment genomic prediction models including GE interaction, using both genomic best linear unbiased prediction and reproducing kernel Hilbert space along with a non-linear Gaussian Kernel. Overall, our empirical analyses showed that genomic prediction models trained with a limited number of MAGIC lines can be used to predict grain yield with values of predictive ability that vary from 0.25 to 0.60 and that beyond QTL mapping and analysis of epistatic effects, MAGIC population might be used to successfully fit genomic prediction models. We concluded that for grain yield, the single-environment genomic prediction models examined in this study are equivalent in terms of predictive ability while, in general, multi-environment models that explicitly split marker effects in main and environmentalspecific effects outperform simpler multi-environment models
    corecore