481 research outputs found
Partial Disorder in the Periodic Anderson Model on a Triangular Lattice
We report our theoretical results on the emergence of a partially-disordered
state at zero temperature and its detailed nature in the periodic Anderson
model on a triangular lattice at half filling. The partially-disordered state
is characterized by coexistence of a collinear antiferromagnetic order on an
unfrustrated honeycomb subnetwork and nonmagnetic state at the remaining sites.
This state appears with opening a charge gap between a noncollinear
antiferromagnetic metal and Kondo insulator while changing the hybridization
and Coulomb repulsion. We also find a characteristic crossover in the
low-energy excitation spectrum as a result of coexistence of magnetic order and
nonmagnetic sites. The result demonstrates that the partially-disordered state
is observed distinctly even in the absence of spin anisotropy, in marked
contrast to the partial Kondo screening state found in the previous study for
the Kondo lattice model.Comment: 4 pages, 4 figures, accepted for publication in J. Phys. Soc. Jp
Thermal Properties of Heavy Fermion Compound YbP
Low-temperature specific heat and its field-dependence up to 16 T was
measured in a stoichiometric single crystal of YbP. A sharp peak was observed
at {\it T} = 0.53 K in zero magnetic field. Application of external
field seems to induce a new magnetic phase above 11 T. The field dependence of
the transition temperature in the high-field phase is different from that of
the low field phase. The linear coefficient of the electronic specific heat is
estimated as 120 mJ/mole K from low temperature specfic heat, suggesting
heavy Fermion state in YbP.Comment: to be published in J.Phys.Soc.Jpn on May, 200
Inner-shell ionization by ultrarelativistic electronsInner-shell ionization by ultrarelativistic electrons
Low-frequency spin dynamics and NMR spin-lattice relaxation in antiferromagnetic rings
We develop a general theory of the spin dynamics of Heisenberg antiferromagnetic rings (HAFRs) that explains the mechanism of NMR spin-lattice relaxation at low temperatures. In HAFRs, the imaginary parts of the q-summed dynamic spin susceptibilities parallel and perpendicular to an applied static field, χ′′sum∥(ω) and χ′′sum⊥(ω), are composed of the sum of many slightly broadened δ-functional modes at many frequencies. The NMR relaxation is caused by the quasielastic mode in χ′′sum∥(ω) at around zero frequency. This quasielastic mode is characterized by two physical quantities, intensity P0∥ and frequency width Γ0∥. Although P0∥ has to date been assumed to be identical to the uniform static susceptibility, we point out that the two quantities are not identical. Without making this unreliable assumption for P0∥, we demonstrate experimentally how P0∥ and Γ0∥ behave, by analyzing the NMR relaxation rates of two different nuclei, H1 and C13, in a real HAFR. This analysis is more rigorous and thus can be used to estimate Γ0∥ and P0∥ more precisely than previously possible. We find that the temperature dependence of P0∥ exhibits activation-type behavior reflecting the first excitation gap. We also find that Γ0∥ decreases monotonically on cooling but saturates to a nonzero value at zero temperature. This strongly suggests that Γ0∥ is dominated not only by the electron-phonon interactions but also by internanomagnet dipole interactions, which have been neglected to date.journal articl
Optimum Arrangement of Resonator in Micro-bunch Free Electron Laser(III. Accelerator, Synchrotron Radiation, and Instrumentation)
Using a short-bunched beam of electrons from a linear accelator, the output of the micro-bunch FEL has been studied experimentally to clarify the optimum arrangement of an open resonator on the electron orbit. The output depends sharply on the arrangement, and the maximum output is observed when the resonator axis intersects the electron orbit with the angle of 3°
Mind the gap: connexins and cell–cell communication in the diabetic kidney
Connexins, assembled as a hexameric connexon, form a transmembrane hemichannel that provides a conduit for paracrine signalling of small molecules and ions to regulate the activity and function of adjacent cells. When hemichannels align and associate with similar channels on opposing cells, they form a continuous aqueous pore or gap junction, allowing the direct transmission of metabolic and electrical signals between coupled cells. Regulation of gap junction synthesis and channel activity is critical for cell function, and a number of diseases can be attributed to changes in the expression/function of these important proteins. Diabetic nephropathy is associated with several complex metabolic and inflammatory responses characterised by defects at the molecular, cellular and tissue level. In both type 1 and type 2 diabetes, glycaemic injury of the kidney is the leading cause of end-stage renal failure, a consequence of multiple aetiologies, including increased deposition of extracellular matrix, glomerular hyperfiltration, albuminuria and tubulointerstitial fibrosis. In diabetic nephropathy, loss of connexin mediated cell–cell communication within the nephron may represent an early sign of disease; however, our current knowledge of the role of connexins in the diabetic kidney is sparse. This review highlights recent evidence demonstrating that maintenance of connexin-mediated cell–cell communication could benefit region-specific renal function in diabetic nephropathy and suggests that these proteins should be viewed as a tantalising novel target for therapeutic intervention
Electrical transport properties of stoichiometric YbP single crystal
A large single crystal of stoichiometric YbP was grown by the mineralization method. We report the electrical resistivity, magnetoresistance, and Hall-effect measurements of this sample. These data are used to calculate the temperature dependences of the mobilities of electrons and holes as well as the carrier concentrations based on the simple two-band model. The results clearly indicate that transport properties in YbP are mainly determined by the conduction-band electrons, though an equal number of valence-band holes is present. The resistivity does not show the 2lnT behavior characteristic of Kondo ompounds.application/pdfjournal articl
Correlations of differentially expressed gap junction connexins cx26, cx30, cx32, cx43 and cx46 with breast cancer progression and prognosis.
BACKGROUND AND AIMS: Connexins and their cell membrane channels contribute to the control of cell proliferation and compartmental functions in breast glands and their deregulation is linked to breast carcinogenesis. Our aim was to correlate connexin expression with tumor progression and prognosis in primary breast cancers. MATERIALS AND METHODS: Meta-analysis of connexin isotype expression data of 1809 and 1899 breast cancers from the Affymetrix and Illumina array platforms, respectively, was performed. Expressed connexins were also monitored at the protein level in tissue microarrays of 127 patients equally representing all tumor grades, using immunofluorescence and multilayer, multichannel digital microscopy. Prognostic correlations were plotted in Kaplan-Meier curves and tested using the log-rank test and cox-regression analysis in univariate and multivariate models. RESULTS: The expression of GJA1/Cx43, GJA3/Cx46 and GJB2/Cx26 and, for the first time, GJA6/Cx30 and GJB1/Cx32 was revealed both in normal human mammary glands and breast carcinomas. Within their subfamilies these connexins can form homo- and heterocellular epithelial channels. In cancer, the array datasets cross-validated each other's prognostic results. In line with the significant correlations found at mRNA level, elevated Cx43 protein levels were linked with significantly improved breast cancer outcome, offering Cx43 protein detection as an independent prognostic marker stronger than vascular invasion or necrosis. As a contrary, elevated Cx30 mRNA and protein levels were associated with a reduced disease outcome offering Cx30 protein detection as an independent prognostic marker outperforming mitotic index and necrosis. Elevated versus low Cx43 protein levels allowed the stratification of grade 2 tumors into good and poor relapse free survival subgroups, respectively. Also, elevated versus low Cx30 levels stratified grade 3 patients into poor and good overall survival subgroups, respectively. CONCLUSION: Differential expression of Cx43 and Cx30 may serve as potential positive and negative prognostic markers, respectively, for a clinically relevant stratification of breast cancers
- …
