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The phase stability and magnetic properties of the half-metal-type Co2Cr1−xFexAl alloy system were
investigated. It was found that the occurrence of two-phase separation is unavoidable in a
concentration range of less thanx=0.4, leading to deviation of the saturation magnetic moments
from the generalized Slater–Pauling line. TheL21-type phase becomes stable in a concentration
range of more thanx=0.7, where no half-metallic behaviors are present. Consequently, it is
concluded that the most favorable concentration for applications to spintronic devices is located
aroundx=0.4 in Co2Cr1−xFexAl alloys having theB2-type phase. ©2004 American Institute of
Physics. [DOI: 10.1063/1.1821654]

Half-metallic ferromagnets(HMFs) have been investi-
gated intensively in the field of spintronics in order to realize
spin-dependent devices with high performance. HMFs hav-
ing a completes=100%d spin-polarization were first pointed
out by de Grootet al. from the band calculations for the Clb

(half-Heusler)-type alloys of NiMnSb and PtMnSb.1 Subse-
quently, manyL21 (full-Heusler)-type HMFs have been in-
vestigated extensively from both theoretical and experimen-
tal viewpoints.2–7

From theoretical calculations,8–12 it has been reported
that L21 and B2-type Co2Cr1−xFexAl alloys exhibit half-
metal-type band structures in the lower concentration range
of x. Inomataet al. have demonstrated that the magnetic
tunneling junctions usingB2-type Co2Cr1−xFexAl alloys with
x=0.4 exhibit a large value of tunneling magnetoresistance
of 19% at room temperature.13,14 Compared with the ex-
pected value,10–12 however, this value is significantly low.
Furthermore, the saturation magnetic moment at 4.2 K for
Co2CrAl alloy has been reported to be 1.55mB/ f .u.,15 which
is about half the value obtained from the generalized Slater–
Pauling line ofMt=Zt−24.5,16 Here,Mt andZt represent the
total spin magnetic moment per unit cell and the total num-
ber of valence electrons, respectively. Theoretically, the re-
ductions of the spin polarization and the saturation magnetic
moment mentioned above for the Co2CrAl alloy were asso-
ciated with the disordering between the Co and Cr sites.10,11

However, it has become clear that the disordering between
the Co and Cr sites is unlikely to occur energetically.10,11

Experimentally, no investigations on the phase stability of
Co2Cr1−xFexAl alloy system have been conducted. Accord-
ingly, it is still unclear what does affect the half-metallic
properties of the Co2Cr1−xFexAl alloys. Therefore, in the
present study, we carried out the metallurgical observations
in order to discuss the phase stability. Furthermore, the mag-
netic properties which reflected the phase stability were mea-
sured for both theB2 andL21-type Co2Cr1−xFexAl alloys.

Several kinds of the specimens were prepared by arc-
melting or in an induction furnace under an argon gas atmo-
sphere. After alloying, each ingot was annealed at 1373 K for
72 h and quenched in ice water. Additional annealings at
various temperatures were done for some specimens. The
compositions of the specimens were determined with an
electron probe microanalyzer. Identifications of their struc-
ture and the phase were achieved by electron diffraction and
transmission electron microscopic(TEM) observations. The
phase transformation temperature was determined by differ-
ential scanning calorimetry(DSC) measurements. Magnetic
measurements were carried out with a superconducting quan-
tum interference devices magnetometer and a vibrating
sample magnetometer. The value of magnetization was cali-
brated by using a pure Ni metal.

Figures 1(a)–1(c) show the selected area diffraction pat-

terns with the specimen tilted to thef011̄g matrix zone axis
and TEM dark-field images taken from thes100dB2,s200dL21

,
or s111dL21

reflections for Co2Cr1−xFexAl alloys with x=0.0,
0.5, and 1.0. The alloys withx=0.0 (a) and 0.5(b) were
prepared by annealing at 773 K for 72 h and the alloy with
x=1.0 (c) was obtained by annealing at 873 K for 168 h. The
single- and double-headed arrows for the dark-filed images
in (b) indicate the same area of theA2-type phase. Note that
a blank panel in Fig. 1 is unnecessary because the(111)
plane is absent in theB2 phase. From the electron diffraction
patterns, two-phase separation is confirmed in Figs. 1(a) and
1(b) for the TEM observations, although the crystal structure
of (a) is identified as theB2-type and that of(b) and (c) as
the L21-type. In the TEM dark-field image for(a), the dark
and white regions correspond to theA2- andB2-type phases,
respectively. For the TEM dark-field images of(b), the two-
phase separation of theA2- and L21-type phases is con-
firmed. It is suggested by our thermodynamical calculations
that the metastable equilibrium compositions of theB2 and
the A2 phases shift to CoAl-rich and CoCr-rich phases,
respectively.17 In the TEM dark-field image for(c), the an-
tiphase boundary of theL21 phase without any precipitates
can be observed.

A metastable phase diagram of the Co2Cr1−xFexAl alloy
system is presented in Fig. 2. The solid line gives the bound-
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ary between the single-phase region and the two-phase re-
gion. The dashed line depicts the transformation temperature
between theL21 phase and theB2 phase. The temperatures
represented by the closed circles and the diamonds were de-
cided from the DSC measurements. Although theB2 phase
exists at higher temperatures in all concentration ranges, the
occurrence of two-phase separation is unavoidable in the
lower concentration range ofx. In the alloy withx=0.4, the
single phase ofB2 phase is obtainable at room temperature
by quenching from 1173 K. On the other hand, in the alloy
with less thanx=0.4, two-phase separation inevitably takes
place regardless of the heat treatment conditions. After ob-
taining aB2-type single phase more thanx=0.7, theL21-type
single phase is obtainable after heat treatment.

From the thermomagnetization curves for a heating rate
of 1.6 K/min, the Curie temperatureTC of the B2 phase

alloy with x=0.5 is about 850 K, and that of theL21 phase
alloys with x=0.8 and 1.0 is 1041 and 1170 K, respectively.
Therefore, TC increases with increasingx. However, it
should be noted that these values would change, depending
on the measuring conditions. For example, the phase separa-
tion and the degree of order are affected by the heating
rate.18

The concentration dependence of the saturation magnetic
momentsMs measured at 4.2 K for Co2Cr1−xFexAl alloys is
shown in Fig. 3. The closed triangles and squares stand for
Ms of theB2+A2 and theB2 phases, respectively. The open
circles representMs of theL21 phase and the solid line gives
the generalized Slater–Pauling line ofMt=Zt−24. The for-
mula unit of theB2 phase is twice that of theL21 phase. The
deviation ofMs from the solid line becomes significant in the
lower concentration range ofx. This is due to the two-phase
separation. The systematic theoretical calculations for
Co2Cr1−xFexAl alloy system indicate that the atomic disor-
dering between the Co and(Cr, Fe) sites degrades the half-
metallic properties, leading to the reduction of the spin po-
larization and the magnetic moment.10,11 The possibility of
degradation of the half-metallic properties of Co2Cr1−xFexAl
alloy system has also been theoretically discussed by consid-
ering the atomic disordering between the(Cr, Fe) and Al
sites, but it has no marked effects on the half-metallic
properties.10,11 Furthermore, it has been reported that the
magnetic moment of theB2 phase for Co2Cr1−xFexAl alloys
is almost the same as that of theL21 phase,11,12 and theL21
and theB2 phases of Co2Cr1−xFexAl alloys with higher con-
centration ofx no longer exhibit half-metallic properties in
their band structures.9–12 In addition, the two-phase separa-
tion results in heterogeneity in the specimen as discussed in
connection with Fig. 2.

More noteworthy is that the calibrated value ofMs for
the alloy with more thanx=0.7 is rather larger than that of
the solid line ofMt=Zt−24. It should be noted that the gen-
eralized Slater–Pauling line often underestimates the experi-
mental magnetic moments of the various transition metal al-
loys and compounds.16 In several Co-based Heusler alloy
systems, it has been pointed out from XMCD measurements
that the magnitude of the orbital magnetic moment is rela-
tively large, being about 5%–10% of the spin magnetic
moment.19–21Therefore, it is expected that the present larger
value of the magnetic moment is explained as the contribu-
tion from the orbital magnetic moment. On the other hand,

FIG. 1. Selected area diffraction patterns of the specimen tilted to thef011̄g
matrix zone axis and TEM dark-field images taken from the
s100dB2,s200dL21

, or s111dL21
reflection for Co2Cr1−xFexAl alloys with x

=0.0, 0.5, and 1.0.(a) x=0.0 annealed at 773 K for 72 h,(b) x=0.5 annealed
at 773 K for 72 h,(c) x=1.0 annealed at 873 K for 168 h. Single- and
double-headed arrows in the dark-filed images of the Co2Cr0.5Fe0.5Al alloy
indicate the same area of theA2-type phase.

FIG. 2. Metastable phase diagram of the Co2Cr1−xFexAl alloy system. The
solid line gives the boundary between the single-phase region and the two-
phase region. The dashed line represents the transformation temperatureTt

between theB2 andL21 phases. The temperatures represented by the closed
circles and diamonds are determined based on the DSC measurements.

FIG. 3. Concentration dependence of the saturation magnetic momentsMs

for Co2Cr1−xFexAl alloys. The closed circles and triangles stand forMs for
the B2+A2 and theB2 phases, respectively. The open squares representMs

of the L21 phase. The solid line gives the generalized Slater–Pauling line
(Refs. 5,15).
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recent theoretical studies including the spin–orbit coupling
have shown that the orbital magnetic moments for the Heu-
sler alloys are negligibly small22,23since the symmetry of the
cubic lattice of the Heusler alloys is very high, and then the
magnetic anisotropy is very small. Further investigations are
necessary to clarify the difference in the total magnetic mo-
ment mentioned earlier.

In summary, the phase stability and the magnetic prop-
erties of theB2- and theL21-type Co2Cr1−xFexAl alloy sys-
tem were investigated. It was confirmed that two-phase sepa-
ration from theB2 phase to theB2 andA2 phases inevitably
takes place in the concentration range less thanx=0.4, re-
sulting in a deviation of the saturation magnetic moments
from the generalized Slater–Pauling line ofMt=Zt−24. In
the concentration range more thanx=0.7, the single phase of
the L21-type phase is obtainable. However, half-metallic
properties can no longer be obtained in this concentration
range. In light of the present results, it is proposed that the
most favorable concentration for spintronic devices is lo-
cated aroundx=0.4 in the Co2Cr1−xFexAl alloy system hav-
ing the B2 phase. Recently, half-metallic properties of
Co2CrGa in theB2 phase have also been reported.24

The authors are very grateful to Professor K. Inomata,
Professor M. Shirai of Tohoku University, and Dr. K. Ish-
ikawa of Kitami Institute of Technology for many helpful
discussions. R.Y.U. was supported by Research Fellowships
of the Japan Society for the Promotion of Science for Young
Scientists.

1R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Bushow,
Phys. Rev. Lett.50, 2024(1983).

2J. Kübler, A. R. Williams, and C. B. Sommers, Phys. Rev. B28, 1745
(1983).

3S. Ishida, S. Sugimura, S. Fujii, and S. Asano, J. Phys.: Condens. Matter
3, 5793(1991).

4S. Ishida, D. Fujii, S. Kashiwagi, and S. Asano, J. Phys. Soc. Jpn.64,
2152 (1995).

5I. Galanakis, P. H. Dederichs, and N. Papanikolaou, Phys. Rev. B66,
174429(2002).

6H. J. Elmers, G. H. Fecher, D. Valdaitsev, S. A. Nepijko, A. Gloskovskii,
G. Jakob, G. Schonhense, S. Wurmehl, T. Block, C. Felser, P. -C. Hsu, W.
-L. Tsai, and S. Cramm, Phys. Rev. B67, 104412(2003).

7T. Block, C. Felser, G. Jakob, J. Ensling, B. Mühling, P. Gütlich, and R. J.
Cava, J. Solid State Chem.176, 646 (2003).

8A. Kellou, N. E. Fenineche, T. Grosdidier, H. Aourag, and C. Coddet, J.
Appl. Phys. 94, 3292(2003).

9S. Ishida, S. Kawakami, and S. Asano, Mater. Trans., JIM45, 1065
(2004).

10Y. Miura, K. Nagao, and M. Shirai, J. Appl. Phys.95, 7225(2004).
11Y. Miura, K. Nagao, and M. Shirai, Phys. Rev. B69, 144413(2004).
12I. Galanakis, J. Phys.: Condens. Matter16, 3089(2004).
13K. Inomata, S. Okamura, R. Goto, and N. Tezuka, Jpn. J. Appl. Phys., Part

2 42, L419 (2003).
14S. Okamura, R. Goto, N. Tezuka, S. Sugimoto, and K. Inomata, Jpn. J.

Appl. Phys., Part 128, 172 (2004).
15K. H. J. Buschow and P. G. van Engen, J. Magn. Magn. Mater.25, 90

(1981).
16J. Kübler, Physica B & C 127, 257 (1984).
17I. Ohnuma, R. Kainuma, and K. Ishida(unpublished).
18K. Ishikawa, M. Ise, I. Ohnuma, R. Kainuma, and K. Ishida, Ber. Bunsen-

ges. Phys. Chem.102, 1206(1998).
19H. J. Elmers, S. Wurmehl, G. H. Fecher, G. Jakob, C. Felser, and G.

Schönhense, Appl. Phys. A: Mater. Sci. Process.79, 557 (2004).
20A. Yamasaki, S. Imada, R. Arai, H. Utsunomiya, S. Suga, T. Muro, Y.

Saitoh, T. Kanomata, and S. Ishida, Phys. Rev. B65, 104410(2002).
21P. J. Brown, K. U. Neumann, P. J. Webster, and K. R. A. Ziebeck, J. Phys.:

Condens. Matter12, 1827(2000).
22S. Picozzi, A. Continenza, and A. J. Freeman, Phys. Rev. B66, 094421

(2002).
23I. Galanakis, Phys. Rev. B(in press).
24R. Y. Umetsu, K. Kobayashi, R. Kainuma, A. Fujita, K. Fukamichi, K.

Ishida, and A. Sakuma, Appl. Phys. Lett.85, 2011(2004).

4686 Appl. Phys. Lett., Vol. 85, No. 20, 15 November 2004 Kobayashi et al.

Downloaded 09 Jul 2008 to 130.34.135.158. Redistribution subject to AIP license or copyright; see http://apl.aip.org/apl/copyright.jsp


