15 research outputs found

    Comparing human skeletal muscle architectural parameters of cadavers with in vivo ultrasonographic measurements

    No full text
    The purpose of this study was to document and compare the architectural parameters (fibre bundle length, angle of pennation) of human skeletal muscle in cadaveric specimens and live subjects. The medial (MG) and lateral (LG) gastrocnemius, and posterior (PS) and anterior (AS) soleus were examined bilaterally in 5 cadavers (mean age 72.6, range 65–83 y) and 9 live subjects (mean age 76.3, range 70–92 y). Data were obtained from direct measurement of cadaveric specimens and from ultrasonographic scans of the live subjects. In cadaveric muscle, fibre bundles were isolated; their length was measured in millimetres and pennation angles were recorded in degrees. In live muscle, similar measurements were taken from ultrasonographic scans of relaxed and contracted muscle. For the scans of relaxed muscle, subjects were positioned prone with the foot at a 90° angle to the leg, and for scans of contracted muscle, subjects were asked to sustain full plantarflexion during the scanning process. Fibre bundle length and angle of pennation were compared at matched locations in both groups. It was found that the relationship between cadaveric and in vivo values for fibre length and angle of pennation varied between muscle parts. The cadaveric architectural parameters did not tend to lie consistently towards either extreme of relaxation or contraction. Rather, within MG, PS and AS, cadaveric fibre bundle lengths lay between those for relaxed and contracted in vivo muscle. Similarly both the anterior and posterior cadaveric fibre angles of pennation lay between the in vivo values within LG and PS. In summary, architectural characteristics of cadaveric muscle differ from both relaxed and contracted in vivo muscle. Therefore, when developing models of skeletal muscle based on cadaveric studies, the architectural differences between live and cadaveric tissue should be taken into consideration

    Isomer and decay studies for the rp process at IGISOL

    No full text
    This article reviews the decay studies of neutron-deficient nuclei within the mass region \ensuremath A=56\mbox{--}100 performed at the Ion-Guide Isotope Separator On-Line (IGISOL) facility in the University of Jyväskylä over last 25 years. Development from He-jet measurements to on-line mass spectrometry, and eventually to atomic mass measurements and post-trap spectroscopy at IGISOL, has yielded studies of around 100 neutron-deficient nuclei over the years. The studies form a solid foundation to astrophysical rp -process path modelling. The focus is on isomers studied either via spectroscopy or via Penning-trap mass measurements. The review is complemented with recent results on the ground and isomeric states of 90Tc . The excitation energy of the low-spin isomer in 90Tc has been measured as \ensuremath E_x=144.1(17) keV with JYFLTRAP double Penning trap and the ground state of 90Tc has been confirmed to be the (8+) state with a half-life of \ensuremath T_{1/2}=49.2(4) s. Finally, the mass-excess results for the spin-gap isomers 53Co m and 95Pd m and implications from the JYFLTRAP mass measurements for the (21+) isomer in 94Ag are discussed
    corecore