30 research outputs found

    Characterization of a Large Group of Individuals with Huntington Disease and Their Relatives Enrolled in the COHORT Study

    Get PDF
    Careful characterization of the phenotype and genotype of Huntington disease (HD) can foster better understanding of the condition.We conducted a cohort study in the United States, Canada, and Australia of members of families affected by HD. We collected demographic and clinical data, conducted the Unified Huntington's Disease Rating Scale and Mini-Mental State Examination, and determined Huntingtin trinucleotide CAG repeat length. We report primarily on cross-sectional baseline data from this recently completed prospective, longitudinal, observational study.As of December 31, 2009, 2,318 individuals enrolled; of these, 1,985 (85.6%) were classified into six analysis groups. Three groups had expanded CAG alleles (36 repeats or more): individuals with clinically diagnosed HD [n = 930], and clinically unaffected first-degree relatives who had previously pursued [n = 248] or not pursued [n = 112] predictive DNA testing. Three groups lacked expanded alleles: first-degree relatives who had previously pursued [n = 41] or not pursued [n = 224] genetic testing, and spouses and caregivers [n = 430]. Baseline mean performance differed across groups in all motor, behavioral, cognitive, and functional measures (p<0.001). Clinically unaffected individuals with expanded alleles weighed less (76.0 vs. 79.6 kg; p = 0.01) and had lower cognitive scores (28.5 vs. 29.1 on the Mini Mental State Examination; p = 0.008) than individuals without expanded alleles. The frequency of "high normal" repeat lengths (27 to 35) was 2.5% and repeat lengths associated with reduced penetrance (36 to 39) was 2.7%.Baseline analysis of COHORT study participants revealed differences that emerge prior to clinical diagnosis. Longitudinal investigation of this cohort will further characterize the natural history of HD and genetic and biological modifiers.Clinicaltrials.gov NCT00313495

    Loss of the BMP Antagonist, SMOC-1, Causes Ophthalmo-Acromelic (Waardenburg Anophthalmia) Syndrome in Humans and Mice

    Get PDF
    Ophthalmo-acromelic syndrome (OAS), also known as Waardenburg Anophthalmia syndrome, is defined by the combination of eye malformations, most commonly bilateral anophthalmia, with post-axial oligosyndactyly. Homozygosity mapping and subsequent targeted mutation analysis of a locus on 14q24.2 identified homozygous mutations in SMOC1 (SPARC-related modular calcium binding 1) in eight unrelated families. Four of these mutations are nonsense, two frame-shift, and two missense. The missense mutations are both in the second Thyroglobulin Type-1 (Tg1) domain of the protein. The orthologous gene in the mouse, Smoc1, shows site- and stage-specific expression during eye, limb, craniofacial, and somite development. We also report a targeted pre-conditional gene-trap mutation of Smoc1 (Smoc1tm1a) that reduces mRNA to ∼10% of wild-type levels. This gene-trap results in highly penetrant hindlimb post-axial oligosyndactyly in homozygous mutant animals (Smoc1tm1a/tm1a). Eye malformations, most commonly coloboma, and cleft palate occur in a significant proportion of Smoc1tm1a/tm1a embryos and pups. Thus partial loss of Smoc-1 results in a convincing phenocopy of the human disease. SMOC-1 is one of the two mammalian paralogs of Drosophila Pentagone, an inhibitor of decapentaplegic. The orthologous gene in Xenopus laevis, Smoc-1, also functions as a Bone Morphogenic Protein (BMP) antagonist in early embryogenesis. Loss of BMP antagonism during mammalian development provides a plausible explanation for both the limb and eye phenotype in humans and mice

    ATRX encodes a novel member of the SNF2 family of proteins: mutations point to a common mechanism underlying the ATR-X syndrome.

    No full text
    It was shown recently that mutations of the ATRX gene give rise to a severe, X-linked form of syndromal mental retardation associated with alpha thalassaemia (ATR-X syndrome). In this study, we have characterised the full-length cDNA and predicted structure of the ATRX protein. Comparative analysis shows that it is an entirely new member of the SNF2 subgroup of a superfamily of proteins with similar ATPase and helicase domains. ATRX probably acts as a regulator of gene expression. Definition of its genomic structure enabled us to identify four novel splicing defects by screening 52 affected individuals. Correlation between these and previously identified mutations with variations in the ATR-X phenotype provides insights into the pathophysiology of this disease and the normal role of the ATRX protein in vivo

    Discrepancies in reporting the CAG repeat lengths for Huntington's disease

    No full text
    Huntington's disease results from a CAG repeat expansion within the Huntingtin gene; this is measured routinely in diagnostic laboratories. The European Huntington's Disease Network REGISTRY project centrally measures CAG repeat lengths on fresh samples; these were compared with the original results from 121 laboratories across 15 countries. We report on 1326 duplicate results; a discrepancy in reporting the upper allele occurred in 51% of cases, this reduced to 13.3% and 9.7% when we applied acceptable measurement errors proposed by the American College of Medical Genetics and the Draft European Best Practice Guidelines, respectively. Duplicate results were available for 1250 lower alleles; discrepancies occurred in 40% of cases. Clinically significant discrepancies occurred in 4.0% of cases with a potential unexplained misdiagnosis rate of 0.3%. There was considerable variation in the discrepancy rate among 10 of the countries participating in this study. Out of 1326 samples, 348 were re-analysed by an accredited diagnostic laboratory, based in Germany, with concordance rates of 93% and 94% for the upper and lower alleles, respectively. This became 100% if the acceptable measurement errors were applied. The central laboratory correctly reported allele sizes for six standard reference samples, blind to the known result. Our study differs from external quality assessment (EQA) schemes in that these are duplicate results obtained from a large sample of patients across the whole diagnostic range. We strongly recommend that laboratories state an error rate for their measurement on the report, participate in EQA schemes and use reference materials regularly to adjust their own internal standards

    Localized mutations in the gene encoding the cytoskeletal protein filamin A cause diverse malformations in humans.

    No full text
    Remodeling of the cytoskeleton is central to the modulation of cell shape and migration. Filamin A, encoded by the gene FLNA, is a widely expressed protein that regulates re-organization of the actin cytoskeleton by interacting with integrins, transmembrane receptor complexes and second messengers. We identified localized mutations in FLNA that conserve the reading frame and lead to a broad range of congenital malformations, affecting craniofacial structures, skeleton, brain, viscera and urogenital tract, in four X-linked human disorders: otopalatodigital syndrome types 1 (OPD1; OMIM 311300) and 2 (OPD2; OMIM 304120), frontometaphyseal dysplasia (FMD; OMIM 305620) and Melnick-Needles syndrome (MNS; OMIM 309350). Several mutations are recurrent, and all are clustered into four regions of the gene: the actin-binding domain and rod domain repeats 3, 10 and 14/15. Our findings contrast with previous observations that loss of function of FLNA is embryonic lethal in males but manifests in females as a localized neuronal migration disorder, called periventricular nodular heterotopia (PVNH; refs. 3-6). The patterns of mutation, X-chromosome inactivation and phenotypic manifestations in the newly described mutations indicate that they have gain-of-function effects, implicating filamin A in signaling pathways that mediate organogenesis in multiple systems during embryonic development
    corecore