8 research outputs found

    Structural puzzles in virology solved with an overarching icosahedral design principle

    Get PDF
    Viruses have evolved protein containers with a wide spectrum of icosahedral architectures to protect their genetic material. The geometric constraints defining these container designs, and their implications for viral evolution, are open problems in virology. The principle of quasi-equivalence is currently used to predict virus architecture, but improved imaging techniques have revealed increasing numbers of viral outliers. We show that this theory is a special case of an overarching design principle for icosahedral, as well as octahedral, architectures that can be formulated in terms of the Archimedean lattices and their duals. These surface structures encompass different blueprints for capsids with same numbers of structural proteins, as well as for capsid architectures formed from a combination of minor and major capsid proteins, and are conserved within viral lineages. They also apply to other icosahedral structures in nature, and offer alternative designs for man-made materials and nanocontainers in bionanotechnology

    Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19

    Get PDF
    The development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines and therapeutics will depend on understanding viral immunity. We studied T cell memory in 42 patients following recovery from COVID-19 (28 with mild disease and 14 with severe disease) and 16 unexposed donors, using interferon-γ-based assays with peptides spanning SARS-CoV-2 except ORF1. The breadth and magnitude of T cell responses were significantly higher in severe as compared with mild cases. Total and spike-specific T cell responses correlated with spike-specific antibody responses. We identified 41 peptides containing CD4+ and/or CD8+ epitopes, including six immunodominant regions. Six optimized CD8+ epitopes were defined, with peptide–MHC pentamer-positive cells displaying the central and effector memory phenotype. In mild cases, higher proportions of SARS-CoV-2-specific CD8+ T cells were observed. The identification of T cell responses associated with milder disease will support an understanding of protective immunity and highlights the potential of including non-spike proteins within future COVID-19 vaccine design

    Trp RNA-binding attenuation protein: modifying symmetry and stability of a circular oligomer

    Get PDF
    Background Subunit number is amongst the most important structural parameters that determine size, symmetry and geometry of a circular protein oligomer. The L-tryptophan biosynthesis regulator, TRAP, present in several Bacilli, is a good model system for investigating determinants of the oligomeric state. A short segment of C-terminal residues defines whether TRAP forms an 11-mer or 12-mer assembly. To understand which oligomeric state is more stable, we examine the stability of several wild type and mutant TRAP proteins. Methodology/Principal Findings Among the wild type B. stearothermophilus, B. halodurans and B. subtilis TRAP, we find that the former is the most stable whilst the latter is the least. Thermal stability of all TRAP is shown to increase with L-tryptophan concentration. We also find that mutant TRAP molecules that are truncated at the C-terminus - and hence induced to form 12-mers, distinct from their 11-mer wild type counterparts - have increased melting temperatures. We show that the same effect can be achieved by a point mutation S72N at a subunit interface, which leads to exclusion of C-terminal residues from the interface. Our findings are supported by dye-based scanning fluorimetry, CD spectroscopy, and by crystal structure and mass spectrometry analysis of the B. subtilis S72N TRAP. Conclusions/Significance We conclude that the oligomeric state of a circular protein can be changed by introducing a point mutation at a subunit interface. Exclusion (or deletion) of the C-terminus from the subunit interface has a major impact on properties of TRAP oligomers, making them more stable, and we argue that the cause of these changes is the altered oligomeric state. The more stable TRAP oligomers could be used in potential applications of TRAP in bionanotechnology
    corecore