24 research outputs found

    Auger-assisted electron transfer from photoexcited semiconductor quantum dots

    Get PDF
    Although quantum confined nanomaterials, such as quantum dots (QDs) have emerged as a new class of light harvesting and charge separation materials for solar energy conversion, theoretical models for describing photoinduced charge transfer from these materials remain unclear. In this paper, we show that the rate of photoinduced electron transfer from QDs (CdS, CdSe, and CdTe) to molecular acceptors (anthraquinone, methylviologen, and methylene blue) increases at decreasing QD size (and increasing driving force), showing a lack of Marcus inverted regime behavior over an apparent driving force range of ∼0-1.3 V. We account for this unusual driving force dependence by proposing an Auger-assisted electron transfer model in which the transfer of the electron can be coupled to the excitation of the hole, circumventing the unfavorable Franck-Condon overlap in the Marcus inverted regime. This model is supported by computational studies of electron transfer and trapping processes in model QD-acceptor complexes

    Non-Condon Theory for the Energy Gap Dependence of Electron Transfer Rate

    No full text

    Persistent Quantum Coherence and Strong Coupling Enable Fast Electron Transfer across the CdS/TiO2 Interface: A Time-Domain ab Initio Simulation

    Get PDF
    Fast transfer of photoinduced electrons and subsequent slow electron–hole recombination in semiconductor heterostructures give rise to long-lived charge separation which is highly desirable for photocatalysis and photovoltaic applications. As a type II heterostructure, CdS/TiO2 nanocomposites extend the absorption edge of the light spectrum to the visible range and demonstrate effective charge separation, resulting in more efficient conversion of solar energy to chemical energy. This improvement in performance is partly explained by the fact that CdS/TiO2 is a type II semiconductor heterostructure and CdS has a smaller energy band gap than UV-active TiO2. Ultrafast transient absorption measurements have revealed that electrons generated in CdS by visible light can quickly transfer into TiO2 before recombination takes place within CdS. Here, using time-domain density functional theory and nonadiabatic molecular dynamics simulations, we show how electronic subsystems of the CdS and TiO2 semiconductors are coupled to their lattice vibrations and coherently evolve, enabling effective transfer of photoinduced electrons from CdS into TiO2. This very fast electron transfer, and subsequent slow recombination of the transferred electrons with the holes left in CdS, is verified experimentally through the proven efficient performance of CdS/TiO2 heterostructures in photocatalysis and photovoltaic applications

    Weak Distance Dependence of Hot-Electron-Transfer Rates at the Interface between Monolayer MoS2 and Gold.

    No full text
    Electron transport across the transition-metal dichalcogenide (TMD)/metal interface plays an important role in determining the performance of TMD-based optoelectronic devices. However, the robustness of this process against structural heterogeneities remains unexplored, to the best of our knowledge. Here, we employ a combination of time-resolved photoemission electron microscopy (TR-PEEM) and atomic force microscopy to investigate the spatially resolved hot-electron-transfer dynamics at the monolayer (1L) MoS2/Au interface. A spatially heterogeneous distribution of 1L-MoS2/Au gap distances, along with the sub-80 nm spatial- and sub-60 fs temporal resolution of TR-PEEM, permits the simultaneous measurement of electron-transfer rates across a range of 1L-MoS2/Au distances. These decay exponentially as a function of distance, with an attenuation coefficient β ∼ 0.06 ± 0.01 Å-1, comparable to molecular wires. Ab initio simulations suggest that surface plasmon-like states mediate hot-electron-transfer, hence accounting for its weak distance dependence. The weak distance dependence of the interfacial hot-electron-transfer rate indicates that this process is insensitive to distance fluctuations at the TMD/metal interface, thus motivating further exploration of optoelectronic devices based on hot carriers

    Theory of highly efficient multiexciton generation in type-II nanorods

    No full text
    Multiexciton generation, by which more than a single electron–hole pair is generated on optical excitation, is a promising paradigm for pushing the efficiency of solar cells beyond the Shockley–Queisser limit of 31%. Utilizing this paradigm, however, requires the onset energy of multiexciton generation to be close to twice the band gap energy and the efficiency to increase rapidly above this onset. This challenge remains unattainable even using confined nanocrystals, nanorods or nanowires. Here, we show how both goals can be achieved in a nanorod heterostructure with type-II band offsets. Using pseudopotential atomistic calculation on a model type-II semiconductor heterostructure we predict the optimal conditions for controlling multiexciton generation efficiencies at twice the band gap energy. For a finite band offset, this requires a sharp interface along with a reduction of the exciton cooling and may enable a route for breaking the Shockley–Queisser limit
    corecore