51 research outputs found

    Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage

    Get PDF
    Rice yield is most sensitive to salinity stress imposed during the panicle initiation (PI) stage. In this study, we have focused on physiological and transcriptional responses of four rice genotypes exposed to salinity stress during PI. The genotypes selected included a pair of indicas (IR63731 and IR29) and a pair of japonica (Agami and M103) rice subspecies with contrasting salt tolerance. Physiological characterization showed that tolerant genotypes maintained a much lower shoot Na(+) concentration relative to sensitive genotypes under salinity stress. Global gene expression analysis revealed a strikingly large number of genes which are induced by salinity stress in sensitive genotypes, IR29 and M103 relative to tolerant lines. We found 19 probe sets to be commonly induced in all four genotypes. We found several salinity modulated, ion homeostasis related genes from our analysis. We also studied the expression of SKC1, a cation transporter reported by others as a major source of variation in salt tolerance in rice. The transcript abundance of SKC1 did not change in response to salinity stress at PI stage in the shoot tissue of all four genotypes. However, we found the transcript abundance of SKC1 to be significantly higher in tolerant japonica Agami relative to sensitive japonica M103 under control and stressed conditions during PI stage. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s11103-006-9112-0 and is accessible for authorized users

    Functional Changes in the Snail Statocyst System Elicited by Microgravity

    Get PDF
    BACKGROUND: The mollusk statocyst is a mechanosensing organ detecting the animal's orientation with respect to gravity. This system has clear similarities to its vertebrate counterparts: a weight-lending mass, an epithelial layer containing small supporting cells and the large sensory hair cells, and an output eliciting compensatory body reflexes to perturbations. METHODOLOGY/PRINCIPAL FINDINGS: In terrestrial gastropod snail we studied the impact of 16- (Foton M-2) and 12-day (Foton M-3) exposure to microgravity in unmanned orbital missions on: (i) the whole animal behavior (Helix lucorum L.), (ii) the statoreceptor responses to tilt in an isolated neural preparation (Helix lucorum L.), and (iii) the differential expression of the Helix pedal peptide (HPep) and the tetrapeptide FMRFamide genes in neural structures (Helix aspersa L.). Experiments were performed 13-42 hours after return to Earth. Latency of body re-orientation to sudden 90° head-down pitch was significantly reduced in postflight snails indicating an enhanced negative gravitaxis response. Statoreceptor responses to tilt in postflight snails were independent of motion direction, in contrast to a directional preference observed in control animals. Positive relation between tilt velocity and firing rate was observed in both control and postflight snails, but the response magnitude was significantly larger in postflight snails indicating an enhanced sensitivity to acceleration. A significant increase in mRNA expression of the gene encoding HPep, a peptide linked to ciliary beating, in statoreceptors was observed in postflight snails; no differential expression of the gene encoding FMRFamide, a possible neurotransmission modulator, was observed. CONCLUSIONS/SIGNIFICANCE: Upregulation of statocyst function in snails following microgravity exposure parallels that observed in vertebrates suggesting fundamental principles underlie gravi-sensing and the organism's ability to adapt to gravity changes. This simple animal model offers the possibility to describe general subcellular mechanisms of nervous system's response to conditions on Earth and in space

    Adult zebrafish as a model organism for behavioural genetics

    Get PDF
    Recent research has demonstrated the suitability of adult zebrafish to model some aspects of complex behaviour. Studies of reward behaviour, learning and memory, aggression, anxiety and sleep strongly suggest that conserved regulatory processes underlie behaviour in zebrafish and mammals. The isolation and molecular analysis of zebrafish behavioural mutants is now starting, allowing the identification of novel behavioural control genes. As a result of this, studies of adult zebrafish are now helping to uncover the genetic pathways and neural circuits that control vertebrate behaviour

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Salt-induced expression of NADP-dependent isocitrate dehydrogenase and ferredoxin-dependent glutamate synthase in Mesembryanthemum crystallinum

    No full text
    Popova OV, Ismailov SF, Popova TN, Dietz K-J, Golldack D. Salt-induced expression of NADP-dependent isocitrate dehydrogenase and ferredoxin-dependent glutamate synthase in Mesembryanthemum crystallinum. PLANTA. 2002;215(6):906-913.NADP-specific isocitrate dehydrogenase is a key cytosolic enzyme that links C and N metabolism by supplying C skeletons for primary N assimilation in plants. We report the characterization of the transcript Mc-ICDH1 encoding an NADP-dependent isocitrate dehydrogenase (NADP-ICDH, EC 1.1.1.42) from the facultative halophyte Mesembryanthemum crystallinum L., focussing on salt-dependent regulation of the enzyme. The activity of NADP-ICDH in plants adapted to high salinity increased in leaves and decreased in roots. By transcript analyses and Western-type hybridizations, expression of Mc-ICDH1 was found to be stimulated in leaves in salt-adapted M. crystallinum. By immunocytological analyses, NADP-ICDH proteins were localized to most cell types with strongest expression in epidermal cells and in the vascular tissue. In leaves of salt-adapted plants, signal intensities increased in mesophyll cells. In contrast to Mc-ICDH1, the activity and transcript abundance of ferredoxin-dependent glutamate synthase (Fd-GOGAT, EC 1.4.7.1), which is the key enzyme of N assimilation and biosynthesis of amino acids, decreased in leaves in response to salt stress. The physiological roles of NADP-ICDH and Fd-GOGAT in the adaptation of plants to high salinity are discussed

    Salt-dependent expression of a nitrate transporter and two amino acid transporter genes in Mesembryanthemum crystallinum

    No full text
    Popova OV, Dietz K-J, Golldack D. Salt-dependent expression of a nitrate transporter and two amino acid transporter genes in Mesembryanthemum crystallinum. PLANT MOLECULAR BIOLOGY. 2003;52(3):569-578.Uptake and transport of inorganic nitrogen and allocation of amino acids are essential for plant growth and development. To study the effects of salinity on the regulation of transporters for nitrogenous compounds, we characterized the putative nitrate transporter McNRT1 and the amino acid transporters McAAT1 and McAAT2 from Mesembryanthemum crystallinum. By transcript analyses, McAAT1 was found in leaves, McAAT2 in roots, and McNRT1 in both tissues. By in situ PCR McNRT1 was localized, for example, to epidermal and vascular cells whereas McAAT2 was abundant in most cell types in mature roots and McAAT1 in the mesophyll and cells neighbouring xylem vessels in leaves. In response to salt stress, expression of McAAT2 and McNRT1 was stimulated in the root vasculature. In addition, McNRT1 and McAAT1 signals increased in the leaf phloem. Growth of yeast mutants deficient in histidine uptake was restored by McAAT2 whereas both McAAT1 and McAAT2 complemented a yeast mutant carrying a defect in proline uptake. The differential and cell-specific transcriptional activation of genes encoding nitrogen and amino acid transporters under salt stress suggest complex coordinated regulation of these transporter families to maintain uptake and distribution of nitrogenous compounds and amino acids under conditions of high salinity in plants

    Mesenchymal Stem Cell Magnetization: Magnetic Multilayer Microcapsule Uptake, Toxicity, Impact on Functional Properties, and Perspectives for Magnetic Delivery.

    No full text
    Mesenchymal stem cells (MSCs) are widely used in cell therapy due to their convenience, multiline differentiation potential, reproducible protocols, and biological properties. The potential of MSCs to impregnate magnetic microcapsules and their possible influence on cell function and ability to response to magnetic field have been explored. Interestingly, the cells suspended in media show much higher ability in internalization of microcapsules, then MSCs adhere into the surface. There is no significant effect of microcapsules on cell toxicity compared with other cell line-capsule internalization reported in literature. Due to internalization of magnetic capsules by the cells, such cell engineering platform is responsive to external magnetic field, which allows to manipulate MSC migration. Magnetically sorted MSCs are capable to differentiation as confirmed by their conversion to adipogenic and osteogenic cells using standard protocols. There is a minor effect of capsule internalization on cell adhesion, though MSCs are still able to form spheroid made by dozen of thousand MSCs. This work demonstrates the potential of use of microcapsule impregnated MSCs to carry internalized micron-sized vesicles and being navigated with external magnetic signaling
    • 

    corecore