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Abstract Plants growing under natural conditions are

exposed to a variety of stresses, which can lead to unde-

sirable changes in the physiological processes and yielding.

These changes can be regulated at different levels, result-

ing in the synthesis of specific proteins which participate in

the plant’s response to stress. The purpose of this study was

to determine changes in the accumulation of proteins in

germinating pea (Pisum sativum L.) seeds under optimal

and osmotic (short- and long-term) stress conditions as well

as recovery following a short-term stress. For identification

of the proteins, two-dimensional electrophoresis and mass

spectrometry (MALDI-TOF) were employed. Germination

in optimal conditions increased the accumulation of several

proteins involved in glycolysis, Krebs cycle, synthesis of

fatty acids, cell growth, cellular transport and detoxifica-

tion. Osmotic stress, in turn, depressed the accumulation of

proteins involved in glycolysis, synthesis of fatty acids,

detoxication, methionine conversions, cellular transport,

translation, growth control and of cytoskeletal proteins, but

raised the accumulation of enzymes of the tricarboxylic

acid cycle as well as proteins participating in signal

transduction and protection (chaperones). One protein, 6a-

hydroxymaackian-3-O-methyltransferase, which is

involved in the synthesis of pisatin, was present only under

osmotic stress conditions and recovery. Pisatin is synthe-

sized mainly in response to microbiological infections and

under stress conditions, indicating its key role in the

acquisition of stress tolerance by plants.
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Introduction

Seeds are an important element in the life cycle of higher

plants, which ensure the survival of plant species. Among the

processes indispensable for the proper seed germination are

the generation of metabolic energy and production of sub-

strates, later used for the synthesis of components necessary

to sustain the growth of a seedling (Bewley and Black 1994).

The development and life cycle of plants are influenced by

environmental stresses, both short- and long-term ones,

which determine the acreage and yields of various plants,

including agricultural crops (Howarth and Ougham 1993).

Pea is among economically viable crops (Gepts et al. 2005).

At present, it is a major legume grown in Europe (www.

grainlegumes.com), and the fourth dominant leguminous

crop, after soybean, peanuts and bean (Vidal-Valverde et al.

2003). Pea seeds are a rich source of proteins, carbohydrates,

fiber, vitamins and minerals, thus playing an important role

in diets of animals and humans (Wang et al. 2003; Urbano

et al. 2005). The demand for plant protein sources raises the

importance of pea as a cultivated crop.
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All metabolic processes in a cell take place in the pro-

toplasm. Therefore, good hydration of the protoplasm

determines the right course of all cellular processes.

Among the most significant environmental factors which

affect the hydration of tissue and, consequently, the course

of cellular processes is osmotic stress, which can be studied

in a laboratory through the application of polyethylene

glycol (PEG) (Couper and Eley 1984). Osmotic stresses

within -0.2 and -0.5 MPa often occur in soils across

Europe. The response of plants to water deficit differs,

depending on the plant species as well as the intensity and

duration of the stress. Water deficit can lead to changes

such as a depressed seed germination rate and capacity as

well as a worse growth and development of sprouts,

seedlings and plants. Thus, it can reduce plants’ produc-

tivity (Boyer 1982; Bensen et al. 1988; Xu and Bewley

1991; Gill et al. 2002; Murillo-Amador et al. 2002).

The response of plants to environmental stresses includes

alterations in the expression of genes as well as physiolog-

ical, biochemical and molecular adaptation processes, for

example changes in the synthesis of proteins (synthesis of

adaptation and protection proteins), accumulation of soluble

protection substances and in the cellular metabolism

(Hasegawa et al. 2000; Kato-Noguchi 2000b; Popova et al.

2001; Kawaguchi et al. 2004). All such modifications are

controlled at the transcriptional, post-transcriptional and

post-translation levels (Kawaguchi et al. 2004). Experiments

simulating conditions which appear in the nature enable us to

describe interactions between plants and environmental

changes, to recognize mechanisms involved in the response

of plants to stress factors and to identify the physiological

and molecular basis of the resistance to stresses, using more

and more up-to-date tools applied in proteomics, genomics

or metabolomics (Hasegawa et al. 2000; Liu et al. 2000;

Chaves et al. 2003; Kmieć et al. 2005; Shao et al. 2005). Such

studies may facilitate the development of cultivars of

improved quality, with enhanced tolerance to specific stress

factors, which is of great importance in agricultural practice

because it can help expand acreage of cropped land and to

increase yields of crops (Liu et al. 2000; Postel 2000; Bazzaz

2001; Graves and Haystead 2002; Xiong et al. 2002; Chaves

et al. 2003; Graham and Vance 2003; Shao et al. 2005). Our

understanding of the mechanisms through which plants

receive environmental signals and transmit them to cells, in

which the mechanisms responsible for plant adaptation are

activated, is important for continuing rational plant breeding

strategies towards the improvement of plant tolerance to

environmental stresses, both abiotic and biotic ones (Xiong

et al. 2002).

The objective of this study was to analyse changes in the

accumulation of proteins in pea (Pisum sativum L.) seeds

germinated under optimal and osmotic stress (-0.5 MPa)

conditions and after post-stress recovery.

Materials and methods

Plant material and germination experiments

The experiments were conducted on the pea (Pisum sati-

vum L. cultivar TOR) 6-week seeds, supplied by Torseed S.

A. (Toruń, Poland). Seeds were surface disinfected in 1 %

sodium hypochloride for 3 min and then washed with tap

and sterilized water. Intact seeds were placed on Petri

dishes with two layers of Whatman 2 filter paper No. 1

(Whatman, Maidstone, Kent, UK) wetted with 40 ml dis-

tilled water and germinated in the dark at ?20 �C for 48

(C48), 72 (C72) and 96 (C96) h. After 48 h, some of the

seeds which germinated under optimal conditions, i.e. in

distilled water, were transferred when the roots were

C1 mm for another 24 h to osmotic stress conditions with

PEG, which decreased the osmotic potential to -0.5 MPa

(S72). After short-term osmotic stress, early seedlings of

pea were transferred again to optimal germination condi-

tions for the next 24 h, which was a recovery period

(SR96). Simultaneously, another batch of pea seeds was

germinated under long-term osmotic stress conditions

(-0.5 MPa) at 20 �C for 96 h (S96). After the set germination

time, sprouts and early seedlings (according to Gong et al.

2001) were isolated from seeds and used for further tests.

All determinations were repeated three times. The design

of the experiment is presented in detail in Fig. 1. For

interpretation of the results of pea seeds’ growth, the

STATISTICA programme (one-factor analysis of variance,

ANOVA, multiple comparison test and Tukey test) was

used; control trials after 24, 48, 72 and 96 h of pea seeds

germination were compared with osmotic stress trials after

24, 48, 72 and 96 h, respectively.

Fig. 1 Growth conditions and the course of the experiment. Statis-

tically significant differences between control trials after 24, 48, 72,

and 96 h of pea seeds germination and osmotic stress trials after 24,

48, 72, and 96 h, respectively, were indicated: *p \ 0.05, **p \ 0.01,

***p \ 0.001 (ANOVA)
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Preparation of total protein extracts

Total protein extracts were prepared from seeds at different

stages of germination in optimal and osmotic stress con-

ditions. Sprouts and early seedlings were ground in liquid

nitrogen using a mortar and a pestle. Subsequently, total

proteins were extracted at 4 �C in the thiourea/urea lysing

buffer (Harder et al. 1999; Gallardo et al. 2002b) con-

taining 7 M urea (Amersham Biosciences), 2 M thiourea

(Merc), 21 mM Tris–HCl (Trizma HCl, Sigma), 16.5 mM

Trizma base (Sigma), 4 % (w/v) CHAPS (Amersham

Biosciences), 14 % protease inhibitor (cocktail ‘‘complete

Mini’’, Roche), 60 U/ml DNAse I (Roche), 5.8 Kunitz

units/ml RNAse A (Sigma), 0.2 % (v/v) Triton X-100

(Sigma) and 1 % (v/v) pharmalyte pH 3–10 carrier

ampholytes (Amersham Biosciences). After 10 min at

4 �C, 8 mM dithiothreitol (DTT, Amersham Biosciences)

was added. Proteins were extracted from germinating seeds

in 20 ll/mg of plant tissue dry matter. The protein extract

was stirred for 45 min at 4 �C and then centrifuged for

10 min at 35,000g at 4 �C. The supernatant was submitted

to another clarifying centrifugation as above. The final

supernatant corresponded to the total protein extract. Pro-

tein concentration was measured according to Bradford

(1976); bovine serum albumin was used as a standard.

Two-dimensional electrophoresis

Proteins were first separated by electrophoresis according

to charge. Isoelectric focusing was carried out with 200 lg

of proteins of the various extracts. Proteins were separated

using gel strips forming an immobilized nonlinear pH

gradient from 3 to 10 (Immobiline DryStrip, pH 3–10 NL,

24 cm, Amersham Bioscience). Strips were rehydrated in

the IPG-Phor system (Amersham Biosciences) for 7 h at

50 V, at 20 �C with the rehydration buffer containing 7 M

urea (Amersham Biosciences), 2 M thiourea (Merck),

65 mM CHAPS (Amersham Biosciences), 20 mM DTT

(Amersham Biosciences), 0.5 % pharmalyte pH 3–10, 2 %

(v/v) Triton X-100 (Sigma) and the protein extracts

(Schiltz et al. 2004). Afterwards, isoelectrofocusing was

performed at 20 �C in the IPG-Phor system for 1 h at

350 V, 3 h at 3,500 V and 7 h at 8,000 V. Proteins were

then separated according to size. Prior to the second

dimension, the gel strips were equilibrated at room tem-

perature for 2 9 15 min in 2 9 100 ml equilibration

solution containing 6 m urea (Amersham Biosciences),

30 % (v/v) glycerol, 87 mM sodium dodecyl sulphate

(SDS, Amersham Biosciences), 150 mM BisTris (Sigma),

0.1 M HCl (Görg et al. 1987; Harder et al. 1999). DTT

(26 mM) was added to the first equilibration solution and

iodoacetamide (0.22 M, Sigma) to the second one (Harder

et al. 1999). Equilibrated gel strips were placed on the top

of vertical polyacrylamide gels composed of 10 % (v/v)

acrylamide (Amersham Biosciences), 0.33 % (w/v) piper-

azine diacrylamide (PDA, Bio-Rad), 16 mM Tris–HCl

(Trizma HCl, Sigma), 0.07 % (w/v) ammonium persul-

phate (APS, Sigma), 0.03 % (v/v) Temed (BioRad). A

denaturing solution [1 % (w/v) low-melting agarose (Gibco

BRL), 0.4 % (w/v) SDS, 0.15 M BisTris (Sigma), 0.1 M

HCl] was loaded on gel strips. After agarose solidification,

electrophoresis was performed at 16 �C in a buffer (pH 8.3)

containing 25 mM Trizma base (Sigma), 200 mM taurine

(Sigma) and 0.1 % (w/v) SDS (Amersham Biosciences),

for 1 h at 35 V and 14 h at 110 V (Gallardo et al. 2002b).

Twelve gels (200 9 250 9 1.0 mm) were run in parallel

(Isodalt system, Amersham Biosciences). For each sample,

2D gels were made in triplicate and from two independent

protein extractions.

Protein staining and analysis of 2D gels

Gels were stained with Coomassie Brilliant Blue G-250

(Bio-Rad) according to the protocol of Mathesius et al.

(2001) or with silver nitrate according to a modified

method of Blum et al. (1987) using the Hoefer Processor

Plus system (Amersham Biosciences). Coomassie Brilliant

Blue staining was conducted with the buffer containing

10 % (w/v) ammonium sulphate (Sigma), 2 % (w/v)

phosphoric acid (pH 6.5) and 0.1 % (w/v) CBB G-250

(Bio-Rad) for 3 days. Gels were washed for 3 min in 0.1 M

Tris/Phosphoric acid (pH 6.5), for 30 s in 25 % (v/v)

methanol and then for 48 h in 20 % (w/v) ammonium

sulphate. Gels were stored at 4 �C in 20 % ammonium

sulphate. Silver staining consisted of 14 steps. At the

beginning, gels were rinsed in deionized water (MilliQ

water) for 4 9 10 min (steps 1–4), next in 0.02 % (w/v)

sodium thiosulphate (Fluka) for 1 min (step 5) and again in

deionized water for 2 9 1 min (steps 6–7). Gels were

coloured by 1.2 % (v/v) silver nitrate (Fluka) in the pre-

sence of 0.1 % (v/v) formaldehyde 37 % (Sigma) for

10 min (step 8). After colouration, gels were rinsed in

deionized water for 2 9 1 min (steps 9–10) and then

underwent revelation using 3.2 % (w/v) potassium car-

bonate (Sigma), 0.1 % (v/v) formaldehyde 37 % (Sigma)

and 0.01 % (w/v) sodium thiosulphate (Fluka) (step 11).

When the proteins (spots) appeared, the reaction was

stopped by rinsing gels in 1.5 % (w/v) ethylenediamine-

tetraacetic acid disodium salt (EDTA, Sigma) for 10 min

(step 12). Subsequently, gels were rinsed in deionized

water for 2 9 5 min (steps 13–14) and conserved in buffer

of 30 % (v/v) ethanol with 5 % (v/v) glycerol. Stained gels

were scanned with a Sharp JX-330 scanner equipped with

the Labscan, version 3.0 (Amersham Biosciences) of the

resolution of 300 dpi. Image analysis was carried out from

the silver-stained gels with the ImageMasterTM 2-D
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Platinum version 5.0 software (GE Healthcare/Amersham

Biosciences) according to the instruction manual. After

spot detection and background subtraction, a synthetic gel

was created, allowing the visualization of all the poly-

peptides. This composite reference map was then used for

protein pattern comparison during the time course and for

matching with 2-D gels from sprouts and early seedlings

tissue. An attempt was made to exclude spots where

overlap with other spots was readily apparent. The quan-

titative determination of spot volumes was performed using

ImageMasterTM 2D Platinum (version 5.0) software and

normalization performed according to ‘total spot volume

normalization’ (Gallardo et al. 2002b). For interpretation of

the results, apart from ImageMasterTM 2D Platinum 5.0,

other programmes such as STATISTICA (one-factor ana-

lysis of variance (ANOVA) and multiple comparison test,

Tukey test) were used. Trial C48 was compared with C72,

C72 with C96, C96 with S96, C72 with S72 and S72 with

SR96. For each analysis, statistical data showed a high

level of reproducibility between normalized spot volumes

of gels produced in triplicate from the two independent

protein extractions (Gallardo et al. 2002b). It was assumed

that protein expression was stimulated/repressed when

normalized spot volume increased/decreased at least 1.5-

fold compared to the control sample.

Protein identification by mass spectrometry

Proteins which showed the most significant changes in their

abundance between the different samples were subjected to

mass spectrometry analysis. Spots were excised from

Coomassie stained 2-D gels and digested by sequence

grade trypsin (Promega, Madisson, USA). After digestion,

the supernatant containing peptides was concentrated on

POROS 50 R2 beads (Roche Molecular Biochemicals,

Switzerland) and used for MALDI-mass spectrometry

analysis on a Bruker Reflex II MALDI-TOF spectrometer

after on-target desorption with matrix solution (Gevaert

et al. 1998). Before each analysis, the instrument was

externally calibrated using two synthetic peptides spotted

as close as possible to the biological sample. Proteins were

identified using peptide mass fingerprinting (Pappin et al.

1993) and available protein databases like MASCOT PMF

(http://www.matrixscience.com) (Schiltz et al. 2004; Gal-

lardo et al. 2002b). To denote a protein as positively

identified, the following criteria were used: protein scores

should be above 75, coverage of the protein by the

matching peptides must reach a minimum of 10 %, and at

least four independent peptides should match within a

stringent 0.001 % (10 ppm) maximum deviation of mass

accuracy. Carbamidomethylation of cysteine residues and

oxidation of methionine were considered as variable

modifications (Gallardo et al. 2002a; Schiltz et al. 2004;

Dihazi et al. 2005). Theoretical masses and isoelectric

points of identified proteins were predicted by entering the

sequence at http://www.expasy.ch/tools/peptide-mass.html

and were compared with experimental masses and pI.

Results

Physiological changes in growth of seedlings

Under osmotic stress, seed germination and growth of early

pea seedlings were evidently inhibited (data not shown), an

event which was accompanied by a reduced increase in

fresh weight. In the control sample, fresh weight of an early

seedling after 72 h of germination was about 101.34 mg,

whereas in the samples subjected to short osmotic stress it

reached 69.83 mg, falling down to 14.52 mg when long

osmotic stress was applied (Fig. 1). When early seedlings

were transferred from water stress to optimal conditions,

recovery processes occur. They were accompanied by an

increase in fresh weight of about 61.61 mg (from 69.83 to

131.44 mg). This increase, however, was smaller than in

the control sample after 96 h of germination (171.20 mg).

These results were drawn by comparing the sample sub-

jected to short osmotic stress (S72) with the control sample

after 72 h (C72) and the sample subjected to long osmotic

stress (S96) with the control sample after 96 h of germi-

nation (C96). In turn, the recovery capacity of plant cells

previously subjected to osmotic stress was assessed by

comparing the samples: recovery (SR96) and stress (S72).

In addition, the samples mentioned above (C72, C96, S72,

S96, SR96) were subjected to proteomic analysis.

Global proteomic changes in optimal conditions

Proteomic analyses enabled us to detect 1,630 different

proteins (over 1,300 proteins on silver-stained 2D gels,

within pH 3–10). All the proteins were arranged into four

classes (Table 1). Under optimal conditions (C), 149 pro-

teins were up-regulated. Synthesis of these proteins was

associated with a specific time of seed germination: 47

proteins were accumulated after 72 h (C72) of germination,

71 after 96 h (C96) and another 31 proteins after 72 and

96 h (C72, C96). Moreover, during the germination of pea

seeds under optimal conditions, 81 proteins were down-

regulated after 72 h (C72), 93 proteins after 96 h (C96) and

45 proteins after 72 and 96 h (C72, C96) (Table 1).

Global proteomic changes under osmotic stress

conditions and recovery

Forty-four proteins were accumulated in pea seeds germi-

nating under long-term osmotic stress (S96), whereas 50
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other proteins were detected under short-term osmotic

stress (S72) (Table 1). Long-term osmotic stress (S96) also

depressed 76 proteins, while short-term osmotic stress

(S72) lowered other 97 proteins. Under the influence of

both analysed stresses (S72, S96), the accumulation of

other 53 proteins was observed, while other 21 proteins

were down-regulated (Table 1). During the recovery after

short-term stress (SR96), 85 proteins were accumulated

and 69 proteins were depressed (Table 1).

Identified proteins and their functional categories

Among all the proteins discovered in 2-D gels, 28 proteins

which showed the most significant changes in their abun-

dance between the different samples were excised and

identified by MS (MALDI-TOF). These proteins are shown

in Fig. 2. All the identified proteins were divided into

functional categories proposed by Bevan et al. (1998).

Among all the identified proteins, 3 were engaged in the

primary metabolism, especially in amino acid and lipid

metabolism (cat. A), and 5 proteins were involved in

energy reactions like glycolysis/gluconeogenesis, pentose

phosphate and in the Krebs cycle (cat. B). The ‘protein

translocation and storage’ category (cat. E) contained 5

proteins (4 folding and stability/chaperons, 1 storage pro-

tein) and the ‘cell structure’ category (cat. H) was com-

posed of 3 proteins (2 included in the cytoskeleton and 1 in

mitochondria). The most numerous was the group of pro-

teins connected with defence mechanisms (cat. J), as it

consisted of six of the identified proteins (half active in

stress responses and the other half involved in detoxifica-

tion reactions). The other categories (cat. C, D, F, G, I and

K) comprised one protein each. All the identified proteins

are presented in Table 2. Among the identified proteins, 27

were accumulated in all samples, while one protein—6a-

hydroxymaackian methyltransferase—was accumulated

Table 1 Classification of proteins which were present in the prote-

ome of pea sprouts and early seedlings grown under: optimal (C),

long-term osmotic stress (S96) and short-term osmotic stress (S72)

conditions, and during recovery after short-term stress (SR96)

Class Description Number of proteins

Proteins

increased at

specific stages

Proteins

decreased at

specific stages

I Proteins regulated under osmotic stress (S72, S96)

S72 50 97

S96 44 76

S72 and S96 53 21

II Proteins regulated during recovery (SR96)

SR96 85 69

III Proteins regulated under optimal conditions (C)

C72 47 81

C96 71 93

C72 and C96 31 45

IV Other proteins whose level

does not vary

significantly between the

different samples

767

Total 1,630

Number of detected proteins whose abundance varied or remained

constant was based on statistical evaluation of the data (quantitative

comparison). Statistically significant differences were determined

between samples C48 and C72, C72 and C96, C96 and S96, C72 and

S72, S72 and SR96

Fig. 2 Proteome of germinating pea seeds under optimal (C96) and osmotic stress (S96) conditions. Green colour indicates 28 proteins which

were excised from 2DE gels and identified by mass spectrometry (MALDI-TOF) (colour figure online)
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Table 2 Changes in the accumulation of the 28 identified proteins under optimal germination conditions (C48, C72, C96), long-term (S96) and

short-term (S72) osmotic stress conditions, and also during recovery after short-term stress (SR96)

No. of  
protein 
groups

Expression level Identified protein
Seq. 
Cov. 
(%)

No. of 
matched 
peptides

No. of un-
matched 
peptides

Organism/ 
GenBank Acc. 

No.
pI MW 

(kDa)

1 2 3 4 5 6 7

A. METABOLISM
Amino acid

1561 methionine synthase 13 9 21 Gly/AAQ08403 5.93 84.40

1219 S-adenosylmethionine 
synthetase-2 (SAM2)

28 7 2 Ps/BAC81655 6.27 37.84

C48/C72/C96/S96/S72/SR96

Lipid (lipid acid) and sterols
1048 3-ketoacyl-acyl carrier protein 

synthase III (KAS III)
16 5 4 At/AAA61348 6.70 43.49

C48/C72/C96/S96/S72/SR96

B. ENERGY
Glycolysis/ Gluconeogenesis

1116 glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) 
(phosphorylating)

23 5 4 Ps/AAA33667 6.55 36.70

1163 fructose-bisphosphate aldolase 39 10 7 Ps/CAA61947 6.77 38.64
C48/C72/C96/S96/S72/SR96

Penthose phosphate
1279

C48/C72/C96/S96/S72/SR96

6-phosphogluconate 
dehydrogenase (6PGDH) 
(decarboxylating)

22 10 10 Ms/AAB41553 5.33 53.86

TCA pathway (Kreb’s cycle) 
1242 NADP-dependent isocitrate 

dehydrogenase (NADP-IDH)
33 13 4 Ps/AAU44341 6.20 46.26

1384 dihydrolipoamide 
dehydrogenase (DLDH)

52 19 7 Ps/CAA45066 6.66 53.54

** * *

*

**

** *

** * * *

*
***

** ** *

*****

* ***

**
** *

* ***

C48/C72/C96/S96/S72/SR96

C. CELL GROWTH/DIVISION 
Cell growth

892 profucosidase precursor 48 10 6 Ps/CAA09607 5.78 23.91
C48/C72/C96/S96/S72/SR96

D. PROTEIN SYNTHESIS
Translation factor

528 elongation factor-1 alpha 
(EF1α)

29 9 13 Nc/BAA34348 9.20 49.63

C48/C72/C96/S96/S72/SR96

E. PROTEIN TRANSLOCATION AND STORAGE
Folding and stability/ Chaperons

1200 heat shock protein 70 (HSP70) 28 8 8 Nc/BAD22854 4.68 43.11

1216 heat shock cognate protein 70 20 9 15 Pm/AAN86275 4.68 44.02

1179 heat shock protein 81-2 
(HSP81-2)

13 9 8 At/AAN31859 4.95 40.33

729 binding protein (BiP) 27 15 7 At/BAA12348 5.08 73.73
C48/C72/C96/S96/S72/SR96

Storage proteins
943 albumin 2 61 12 8 Ps/AAA02981 5.16 26.39

C48/C72/C96/S96/S72/SR96

F. TRANSPORTERS
Transport ATPases

1382 H+-transporting ATPase 57 25 7 Ps/BAA03524 5.84 55.33
C48/C72/C96/S96/S72/SR96

G. INTRACELLULAR TRAFFIC 
Vesicular (or ER/Golgi)

883 ADP-ribosylation factor 1 
(ARF)

51 8 4 Pp/AAO63779 5.82 20.62

C48/C72/C96/S96/S72/SR96

*
*

*

**

* *

**

***

* * *

**
*

*

*

**

*** **

** *

** **

****

**

** * *

****
*
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only during osmotic stress conditions (S72, S96) and post-

stress recovery (SR96).

Changes in accumulation of identified proteins

under optimal conditions

Among the proteins whose accumulation increased during

the germination period under optimal conditions were

proteins which participated in metabolism (lipid acid syn-

thesis—3-ketoacyl-acyl carrier protein synthase III),

energy reactions (e.g. glycolysis/gluconeogenesis—gly-

ceraldehyde-3-phosphate dehydrogenase and the Krebs

cycle—NADP-dependent isocitrate dehydrogenase), cell

growth (profucosidase precursor), transport (H?-transport-

ing ATPase, ADP-ribosylation factor 1), detoxification

(monodehydroascorbate and glutathione-disulphide reduc-

tase) and in stress responses (chitinase). In contrast, the

accumulation of storage proteins (albumin 2), chaperons

(binding protein), proteins participating in metabolism of

amino acids (methionine synthase, S-adenosylmethionine

synthetase-2), translation (elongation factor-1 alpha),

cytoskeleton (tubulin), signal transduction (14-3-3-like

protein) and in defence mechanism (e.g. stress responses—

lectin, ferritin precursor, detoxification—alcohol dehydro-

genase) became considerably depressed during the same

period (Table 2).

Changes in accumulation of identified proteins

under osmotic stress conditions

Among the proteins whose abundance decreased under

osmotic stress conditions are 17 proteins associated with

defence mechanisms—4 (stress responses—chitinase, fer-

ritin precursor and detoxification—monodehydroascorbate

and glutathione-disulphide reductase), translocation—3

(HSP70, HSPc70, HSP81-2), metabolism—2 (S-adenosyl-

methionine synthetase-2, 3-ketoacyl-acyl carrier protein

synthase III), glycolysis/gluconeogenesis—2 (glycer-

aldehyde-3-phosphate dehydrogenase, fructose-bisphos-

phate aldolase), cell growth—1 (profucosidase precursor),

Table 2 continued

H. CELL STRUCTURE
Cytoskeleton

1234 actin 7 31 8 10 At/AAB52506 5.31 41.93

1308 tubulin (alpha-5 chain) 22 7 5 At/AAN31860 4.95 50.25

C48/C72/C96/S96/S72/SR96

Mitochondria
233 porin por1 74 14 15 Ps/CAA80988 9.11 29.58

C48/C72/C96/S96/S72/SR96

I. SIGNAL TRANSDUCTION
866 14-3-3-like protein 36 6 11 Ps/CAB42546 4.68 29.45

C48/C72/C96/S96/S72/SR96

J. DISEASE/ DEFENCE
Stress responses

1000 chitinase 27 6 6 Ps/AAA75196 7.34 35.74

878 lectin 40 6 4 Ps/AAA33676 5.31 19.97

938 ferritin precursor 24 6 6 Ps/CAA45763 6.14 28.77

C48/C72/C96/S96/S72/SR96

Detoxification
234 alcohol dehydrogenase (ADH) 27 9 10 Ps/CAA29609 6.08 41.87

806 monodehydroascorbate 
reductase (NADH2) 
(MDHAR)

48 15 17 Ps/AAA60979 5.79 47.39

1167 glutathione-disulphide 
reductase (GR)

26 9 8 Ps/CAA66924 6.09 54.20

C48/C72/C96/S96/S72/SR96

K. SECONDARY METABOLISM
1164 6a-hydroxymaackian 

methyltransferase (HMM)
29 8 7 Ps/AAC49856 5.70 40.55

C48/C72/C96/S96/S72/SR96

*

*
*

**

*

*
**

***

**
**

*

**
**

**

**
*

** **
*** *

*
*

***

***

* ***

*

****

* **

Identification was performed by mass spectrometry (MALDI-TOF). Proteins were divided into functional categories according to Bevan et al.

(1998). Statistically significant differences between C48 and C72, C72 and C96, C96 and S96, C72 and S72, S72 and SR96 trials were indicated:

* p \ 0.05, ** p \ 0.01, *** p \ 0.001 (ANOVA)

GenBank Accession No. NCBI (http://www.ncbi.nlm.nih.gov/protein), At Arabidopsis thaliana, Gly glycine max, Ms Medicago sativa, Nc

Nicotiana paniculata/benthamiana, Ps Pisum sativum, Pm Pumpkin (Cucurbita maxima), Pp Populus tremuloides
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protein synthesis—1 (elongation factor-1 alpha), intracel-

lular traffic—1 (ADP-ribosylation factor 1) and structural

components of cells—3 (cytoskeleton—actin 7, tubulin and

mitochondria—porin por 1). Also, for six of the identified

proteins, considerably increased accumulation was

observed. These were proteins involved in the Krebs cycle

(dihydrolipoamide dehydrogenase), chaperons (BiP),

transport ATPases (H?-transporting ATPase), signal

transduction (14-3-3-like protein) and detoxification

(alcohol dehydrogenase). Besides, under the influence of

osmotic stress (S72, S96), the accumulation of one iden-

tified protein participating in secondary metabolism

increased. This enzyme, 6a-hydroxymaackian methyl-

transferase (HMM), is involved in the synthesis of pisatin.

It can be assumed that these proteins whose accumulation

increased under osmotic stress conditions play a key role in

the acquisition of stress tolerance by plants.

Changes in accumulation of identified proteins

under recovery after stress

Among the proteins whose accumulation increased under

the recovery period after short-term stress (SR96) were

proteins involved in lipid biosynthesis (KASIII), energy

(GADPH), cell structure (actin 7, tubulin, porin por 1) and

defence mechanism (chitinase, alcohol dehydrogenase,

monodehydroascorbate, glutathione-disulphide reductase).

Among the proteins whose accumulation was considerably

depressed during recovery were proteins involved, for

example, in the Krebs cycle (NADP-dependent isocitrate

and dihydrolipoamide dehydrogenase), pentose phosphate

(6-phosphogluconate dehydrogenase), amino acid synthesis

(methionine synthase), signal transduction (14-3-3-like

protein), stress responses (lectin, ferritin precursor) and

storage protein (albumin 2) (Table 2). Another protein

whose expression was lower during recovery was the

enzyme HMM, participating in secondary metabolism in

plants, which may indicate that this enzyme is accumulated

only during unfavourable environmental conditions.

Discussion

Growth and development during osmotic stress

Under osmotic stress, the germination of pea seeds as well

as the growth and development of early seedlings are

inhibited (Xu and Bewley 1991; Gill et al. 2002; Murillo-

Amador et al. 2002). Here, we found that the accumulation

of the following proteins involved in cellular divisions and

growth is depressed under stress conditions: SAM (Espar-

tero et al. 1994; Schröder et al. 1997), AFR, profucosidase,

chitinase, actin 7 (McDowell et al. 1996), tubulin (Dihazi

et al. 2005), EF1a (Singh et al. 2004), porin por 1 (Kirch

et al. 2000; Smart et al. 2001; Vera-Estrella et al. 2004) or

ferritin (Petit et al. 2001). Ado-Met synthase is associated

with high metabolic activity of embryos, which occurs

during germination and during the growth and develop-

ment of plants by catalysing the synthesis of Ado-Met

(Gallardo et al. 2002a). Reduction of SAM under stress

conditions could be related to growth inhibition. Porin por

proteins are embedded in the outer membrane of mito-

chondria (Benz 1985), where they enable plants to store

more water in tissues during drought, thus reinforcing plant

tolerance to this stress (Kirch et al. 2000; Smart et al.

2001). Depressed accumulation of ferritin in the embryonic

tissue of pea in response to osmotic stress can be attributed

to the activation of iron regulatory proteins (IRPs). As

evidenced by Pantopoulos et al. (1997), H2O2 activates

these proteins and, according to Swenson et al. (1991) or

Harrison and Arosio (1996), it suppresses the synthesis of

ferritin at the translation level.

Cellular energy reactions and metabolism

during osmotic stress

Under osmotic stress, the accumulation of proteins

involved in cellular metabolism, like GAPDH, fructose-

bisphosphate aldolase and KASIII, is depressed (Ricard

et al. 1989; Yamada et al. 2000). Reduction in the accu-

mulation of fructose-biphosphate aldolase leads to a

depressed rate of photosynthesis, synthesis of carbohy-

drates and plant growth. Depressed accumulation of

aldolase is accompanied by an increase in the content of

3-phosphoglyceric aldehyde and glycerophosphate in plant

tissues (Haake et al. 1998). Accumulated phosphate trioses

are transported to the cytosol, where they are transformed

to hexoses and function as osmoprotectants (Yamada et al.

2000). Depressed accumulation of GAPDH most probably

inhibits the process of glycolysis and consequently the

synthesis of fatty acids. Accordingly, the level of KASIII,

which participates in condensation of acylmalonyl-ACP

from acetyl-ACP and malonyl-ACP, decreased during

osmotic stress. According to Dehesh et al. (2001), a factor

which may limit the content of fats could be the absence of

malonyl-CoA, produced from acetyl-CoA. The accumula-

tion of 6-phosphogluconate dehydrogenase (6PGDH) or

NADP-IDH increased in response to short-term stress but

decreased under long-term stress (Popova et al. 2001;

Huang et al. 2003; Hou et al. 2007). The role of NADP-

IDH, activated during stress, most probably consists in

accelerating a-ketoglutarate synthesis, which is needed for

reorganization of the cell’s metabolism and induction of

metabolic pathways, important for adaptation processes,

especially when proline and c-aminobutyric acid (GABA)

are accumulated during stress; 2-ketoglutarate is a
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nitrogen-free precursor for proline and GABA (Popova

et al. 2001). Another important element in plants’ response

to abiotic stresses is the pentose phosphate pathway, in

which 6PGDH may function as a factor regulating the

efficiency of this pathway (Huang et al. 2003; Hou et al.

2007).

Detoxification under osmotic stress

Under osmotic stress, the concentration of ABA in cells

increases (Taylor et al. 2000; Starck 2002), which induces

alcohol dehydrogenase (ADH) gene expression (De Brux-

elles et al. 1996). Stimulating the expression of ADH under

the influence of a variety of stresses has been demonstrated

(Jarillo et al. 1993; Conley et al. 1999; Kato-Noguchi

2000a). ADH is probably essential for removing toxic

acetic aldehydes and regulating cytoplasmatic pH during

stress conditions (Kato-Noguchi 2000a). In turn, accumu-

lation and activity of antioxidant enzymes, e.g. monode-

hydroascorbate reductase (Huang et al. 2005; Shohael et al.

2006) and glutathione reductase (Van Der Mescht et al.

1998) are depressed under stress conditions. These proteins

play a key role in the acquisition of the ability to detoxify

reactive oxygen species (ROS) by plants, especially during

germination and growth (Cakmak et al. 1993).

Plant adaptation to osmotic stress: defence

and tolerance mechanism

Plants are protected from the negative effects of stress by

dihydrolipoamide dehydrogenase—DLDH (Banzai et al.

2002), which, through its nitrogen reductase activity,

depresses high level of nitrogen oxide (NO) in a cell by

transforming it into nitrate (Igamberdiev et al. 2004). An

increase in the level of NO, which occurs in response to

unfavourable environmental conditions, is connected to an

increase in the accumulation of DLDH. Tolerance of plants

to water deficit is also improved by BiP (Cascardo et al.

2000; Alvim et al. 2001), which maintains the proper

structure of proteins and membranes during stress (Gal-

lardo et al. 2001). Moreover, BiP is engaged in the binding

or transfer of water as well as accumulation of ions and

also supports high secretion activity of proteins during

water deficit, controlling proper folding and maturation of

proteins (Ingram and Bartels 1996; Cascardo et al. 2000).

Accumulation of this protein significantly increased during

stress (Kalinski et al. 1995; Cascardo et al. 2000; Alvim

et al. 2001), for example to protect plants from endogenous

oxidative stress caused by water deficit in cells (Alvim

et al. 2001). In turn, the accumulation of lectin is depressed

under the influence of short-term stress but rises during

long-term stress (Esteban et al. 2002; Shakirova et al.

2003). This means that lectins protect plants from harmful

effects of long-term water stress, which inhibits the mitotic

activity in cells of a growing root (Shakirova et al. 2003).

Functioning of signal transduction and cell transport

system during osmotic stress

Osmotic stress improves the hydrolysis of ATP and trans-

port of H? through membranes owing to the formation of a

membrane complex 14-3-3-ATPase (Babakov et al. 2000;

Kerkeb et al. 2002; Shanko et al. 2003). By joining the

autoinhibitory domain in the C-terminal region of this

enzyme with 14-3-3-like protein, an active form of H?-

transporting ATPase is created, which stimulates the

uptake of nutrients by the cell (Jahn et al. 1997; Borch et al.

2002). Increased transport of H? is necessary for the cell to

restore ionic homeostasis under new environmental con-

ditions and to activate the signal transduction cascade

(Kerkeb et al. 2002). Proper functioning of H?-transporting

ATPase also enables plants to maintain the right turgor

pressure in cells during stress (Yan et al. 2004). The results

of our experiment indicate that an increased H? transport

through ATPase, phosphorylated and connected with 14-3-

3 protein, is part of an early response of cells to disorders

caused by osmotic stress (Babakov et al. 2000; Kerkeb

et al. 2002). Moreover, the content of the 14-3-3 protein

connected with the plasmatic membrane increases under

osmotic stress alongside the stimulation of the flow of H?

through cells (Babakov et al. 2000; Kerkeb et al. 2002;

Shanko et al. 2003). Plants with elevated expression of

14-3-3-like protein encoding gene (GF14k) demonstrate

higher tolerance to water stress by maintaining the proper

turgor pressure and a higher rate of photosynthesis when

shortage of water appears (Yan et al. 2004). It is probable

that 14-3-3 is also needed for activation of Ca2?-dependent

protein kinase (CDPK) and other enzymes during water

stress (Camoni et al. 1998). It is worth mentioning that

limited participation of the ADP-ribosylation factor (ARF)

also leads to the activation of the 14-3-3 protein gene ( _Zuk

et al. 2003).

Functioning of secondary metabolism during osmotic

stress

Under the influence of changeable environmental condi-

tions, enzymes of the secondary metabolic pathways,

which lead to the synthesis of various protective sub-

stances, e.g. phytoalexins, are activated (Soylu et al. 2002;

Kuniga 2004; Zhao et al. 2005; Liu et al. 2006). It needs to

be emphasized that phytoalexins are not synthesized in

healthy plants growing under optimal conditions (Mert-

Türk 2002). Among the products of the biosynthesis of
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phytoalexins is pisatin. An enzyme which participates in

synthesis of pisatin is 6a-hydroxymaackian methyltrans-

ferase (HMM) (Wu et al. 1997; Liu et al. 2006). According

to Sweigard et al. (1986), accumulation of phytoalexin

isoflavonoids in leguminous plants is preceded by an

increased level and activity of enzymes participating in

their synthesis. This hypothesis has been verified by the

experimental results obtained by Preisig et al. (1989), who

observed that an increase in the content of pisatin was

preceded by an enhanced activity of HMM, which means

that HMM and its product, pisatin, can play an important

role in the formation of plants’ tolerance to osmotic stress.

It is worth mentioning that HMM decreased under recovery

after stress.

Accumulation of proteins under recovery after osmotic

stress

Recovery following osmotic stress caused the resumed

intensive growth of early pea seedlings and accumulation

of fresh matter (Bensen et al. 1988; Gill et al. 2002). This

means that during the recovery period, cellular processes

were activated, such as cell division and metabolic path-

ways in seedlings as well as the accumulation of accom-

panying proteins, which had been depressed under stress

(e.g. GAPDH, KASIII, MDHAR, GSH reductase, ADH,

chitinase, actin7, ADP-ribosylation factor). Higher accu-

mulation of enzymes such as GAPDH occurs in cells

undergoing intensive growth and divisions (McAlister and

Holland 1985). MDHAR in elongating plant cells under

recovery plays an important role by mediating the transport

of electrons through the plasma membranes (Morre et al.

1986). It is noteworthy that the accumulation of porin por 1

increased during recovery. These proteins are necessary for

the proper growth and functions of cells, ensuring fast

inflow of water to vacuoles (Ludevid et al. 1992; Chaumont

et al. 1998). This could imply that regeneration processes

after stress occur very slowly because, as reported by

Martre et al. (2002), a higher content of porins indicates

faster recovery process and growth of plants after water

stress. The fact that plants underwent recovery was also

indicated by the decreased accumulation of proteins whose

synthesis had been considerably raised under stress con-

ditions, e.g. H?-transporting ATPase, NADPH-IDH, HM

14-3-3-like protein, or albumin 2. Albumins, which func-

tion as a reserve of nitrogen amino acids and skeletal

carbons during the growth of plants, were degraded under

recovery and used to synthesize new proteins (Murray

1979). Moreover, processes which are regulated by 14-3-3-

like protein such as primary metabolism, intermembrane

transport and cellular transduction signal (Aitken et al.

1992; Ferl 1996; Comparot et al. 2003) were also depressed

under recovery.

Conclusions

The identified protein, 6a-hydroxymaackian methyltrans-

ferase, can serve as an object for an engineering strategy,

involved in the creation of new plants which will be more

resistant to unfavourable environmental conditions.
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