691 research outputs found

    Electroresponsive Polyelectrolyte Brushes Studied by Self-Consistent Field Theory

    Get PDF
    End-grafting of polyelectrolyte chains to conducting substrates offers an opportunity to fabricate electro-responsive surfaces capable of changing their physical/chemical properties (adhesion, wettability) in response to applied electrical voltage. We use a self-consistent field numerical approach to compare the equilibrium properties of tethered strong and weak (pH-sensitive) polyelectrolytes to applied electrical field in both salt-free and salt-containing solutions. We demonstrate that both strong and weak polyelectrolyte brushes exhibit segregation of polyions in two populations if the surface is oppositely charged with respect to the brush. This segregation gives rise to complex patterns in the dependence of the brush thickness on salt concentration. We demonstrate that adjustable ionization of weak polyelectrolytes weakens their conformational response in terms of the dependence of brush thickness on the amplitude of the applied voltage

    Polymer Brush in a Nanopore: Effects of Solvent Strength and Macromolecular Architecture Studied by Self-Consistent Field and Scaling Theory

    Get PDF
    To study conformational transition occuring upon inferior solvent strength in a brush formed by linear or dendritically branched macromolecules tethered to the inner surface of cylindrical or planar (slit-like) pore, a self-consistent field analytical approach is employed. Variations in the internal brush structure as a function of variable solvent strength and pore radius, and the onset of formation of a hollow channel in the pore center are analysed. The predictions of analytical theory are supported and complemented by numerical modelling by a self-consistent field Scheutjens–Fleer method. Scaling arguments are used to study microphase segregation under poor solvent conditions leading to formation of a laterally and longitudinally patterned structure in planar and cylindrical pores, respectively, and the effects of confinement on "octopus-like" clusters in the pores of different geometries

    Structure and properties of polydisperse polyelectrolyte brushes studied by self-consistent field theory.

    Get PDF
    Two complementary self-consistent field theoretical approaches are used to analyze the equilibrium structure of binary and ternary brushes of polyions with different degrees of polymerization. Stratification in binary brushes is predicted: the shorter chains are entirely embedded in the proximal sublayer depleted of end-points of longer chains while the peripheral sublayer contains exclusively terminal segments of longer chains. The boundary between sublayers is enriched with counterions that neutralize the residual charge of the proximal sublayer. These analytical predictions for binary brushes are confirmed and extended to ternary brushes using the numerical Scheutjens-Fleer approach

    UBR5 is a Novel E3 Ubiquitin Ligase involved in Skeletal Muscle Hypertrophy and Recovery from Atrophy

    Get PDF
    We have recently identified that a HECT domain E3 ubiquitin ligase, named UBR5, was epigenetically altered (via DNA methylation) after human skeletal muscle hypertrophy, where its gene expression was positively correlated with increased lean leg mass in humans [1]. This was counterintuitive given the well-defined role of other E3 ligase family members, MuRF1 and MAFbx in muscle atrophy. Therefore, in the present study we aimed to investigate this relatively uncharacterised E3 ubiquitin ligase using multiple in-vivo and in-vitro models of skeletal muscle atrophy, injury, recovery from atrophy as well as anabolism and hypertrophy. We report for the first time, that during atrophy evoked by tetrodotoxin (TTX) nerve silencing in rats, the UBR5 promoter was significantly hypomethylated with a concomitant increase in gene expression early (3 & 7 days) after the induction of atrophy. However, at these timepoints larger increases in MuRF1/MAFbx were observed, and UBR5 expression had returned to baseline levels during later atrophy (14 days) where muscle mass loss was greatest. We confirmed an alternate gene expression profile for UBR5 versus MuRF1/MAFbx in a secondary model of atrophy induced by 7 days continuous low frequency electrical stimulation, where UBR5 demonstrated no significant increase, whereas MuRF1/MAFbx were elevated. Further, after partial (52%) recovery of muscle mass following 7 days TTX-cessation, UBR5 was hypomethylated and increased at the gene expression level, while alternately, reductions in gene expression of MuRF1 and MAFbx were observed. To substantiate these gene expression findings, we observed a significant increase in UBR5 protein abundance after full recovery (14 days) of muscle mass from hindlimb unloading (HU) in rats. Aged rats also demonstrated a similar temporal increase in UBR5 protein abundance after recovery from HU. Further, we confirmed significant increases in UBR5 protein during recovery from nerve crush injury in mice at 28 and 45 days, that related to a full recovery of muscle mass between 45-60 days. During anabolism and hypertrophy, UBR5 gene expression increased following an acute bout of mechanical loading in three-dimensional bioengineered mouse muscle in-vitro, and after chronic electrical stimulation-induced hypertrophy in rats in-vivo, without increases in MuRF1/MAFbx. Additionally, increased UBR5 protein abundance was identified following synergist ablation/functional overload (FO)-induced hypertrophy of the plantaris muscle in mice in-vivo, and finally over a 7-day time-course of regeneration in primary human muscle cells in-vitro. Finally, genetic association studies (> 700,000 SNPs) in human cohorts identified that the A alleles of rs10505025 and rs4734621 SNPs were strongly associated with larger cross-sectional area of fast-twitch muscle fibres and favoured strength/power versus endurance/untrained phenotypes. Overall, we suggest that UBR5 is a novel E3 ubiquitin ligase that is alternatively regulated compared to MuRF1/MAFbx, and is elevated during early atrophy (but not later atrophy), recovery, anabolism and hypertrophy in animals in-vivo as well as during human muscle cell regeneration in-vitro. In humans, genetic variations of the UBR5 gene are strongly associated with larger fast-twitch muscle fibres and strength/power performance

    DNA methylation across the genome in aged human skeletal muscle tissue and muscle-derived cells: the role of HOX genes and physical activity.

    Get PDF
    Skeletal muscle tissue demonstrates global hypermethylation with age. However, methylome changes across the time-course of differentiation in aged human muscle derived cells, and larger coverage arrays in aged muscle tissue have not been undertaken. Using 850K DNA methylation arrays we compared the methylomes of young (27 ± 4.4 years) and aged (83 ± 4 years) human skeletal muscle and that of young/aged heterogenous muscle-derived human primary cells (HDMCs) over several time points of differentiation (0, 72 h, 7, 10 days). Aged muscle tissue was hypermethylated compared with young tissue, enriched for; pathways-in-cancer (including; focal adhesion, MAPK signaling, PI3K-Akt-mTOR signaling, p53 signaling, Jak-STAT signaling, TGF-beta and notch signaling), rap1-signaling, axon-guidance and hippo-signalling. Aged cells also demonstrated a hypermethylated profile in pathways; axon-guidance, adherens-junction and calcium-signaling, particularly at later timepoints of myotube formation, corresponding with reduced morphological differentiation and reductions in MyoD/Myogenin gene expression compared with young cells. While young cells showed little alterations in DNA methylation during differentiation, aged cells demonstrated extensive and significantly altered DNA methylation, particularly at 7 days of differentiation and most notably in focal adhesion and PI3K-AKT signalling pathways. While the methylomes were vastly different between muscle tissue and HDMCs, we identified a small number of CpG sites showing a hypermethylated state with age, in both muscle tissue and cells on genes KIF15, DYRK2, FHL2, MRPS33, ABCA17P. Most notably, differential methylation analysis of chromosomal regions identified three locations containing enrichment of 6-8 CpGs in the HOX family of genes altered with age. With HOXD10, HOXD9, HOXD8, HOXA3, HOXC9, HOXB1, HOXB3, HOXC-AS2 and HOXC10 all hypermethylated in aged tissue. In aged cells the same HOX genes (and additionally HOXC-AS3) displayed the most variable methylation at 7 days of differentiation versus young cells, with HOXD8, HOXC9, HOXB1 and HOXC-AS3 hypermethylated and HOXC10 and HOXC-AS2 hypomethylated. We also determined that there was an inverse relationship between DNA methylation and gene expression for HOXB1, HOXA3 and HOXC-AS3. Finally, increased physical activity in young adults was associated with oppositely regulating HOXB1 and HOXA3 methylation compared with age. Overall, we demonstrate that a considerable number of HOX genes are differentially epigenetically regulated in aged human skeletal muscle and HDMCs and increased physical activity may help prevent age-related epigenetic changes in these HOX genes

    Is testosterone responsible for athletic success in female athletes?

    Get PDF
    BACKGROUND: The aim of this study was to determine the interrelationship between the resting serum testosterone (T) levels of female athletes from different types of sporting events and their athletic success. METHODS: The study involved 599 Russian international-level female athletes (95 highly elite, 190 elite, and 314 sub-elite; age: 16-35 years) and 298 age-matched female controls. The athlete cohort was stratified into four groups according to event duration, distance, and type of activity: 1) endurance athletes; 2) athletes with mixed activity; 3) speed/strength athletes; 4) sprinters. Athletic success was measured by determining the level of achievement of each athlete. RESULTS: The mean T levels of athletes and controls were 1.65±0.87 and 1.76±0.6 nmol/L (P=0.057 for difference between groups) with ranges of 0.08-5.82 and 0.38-2.83 nmol/L in athletes and controls, respectively. T levels were positively associated with athletic success in sprinters (P=0.0002 adjusted for age) only. Moreover, none of the sub-elite sprinters had T>1.9 nmol/L, while 50% of elite and highly elite sprinters had T>1.9 nmol/L (OR=47.0; P<0.0001). CONCLUSIONS: Our data suggest that the measurement of the serum T levels significantly correlates with athletic success in sprinters but not other types of athletes and in the future may be useful in the prediction of sprinting ability

    Biology of archaea from a novel family Cuniculiplasmataceae (Thermoplasmata) ubiquitous in hyperacidic environments

    Get PDF
    The order Thermoplasmatales (Euryarchaeota) is represented by the most acidophilic organisms known so far that are poorly amenable to cultivation. Earlier culture-independent studies in Iron Mountain (California) pointed at an abundant archaeal group, dubbed 'G-plasma'. We examined the genomes and physiology of two cultured representatives of a Family Cuniculiplasmataceae, recently isolated from acidic (pH 1-1.5) sites in Spain and UK that are 16S rRNA gene sequence-identical with 'G-plasma'. Organisms had largest genomes among Thermoplasmatales (1.87-1.94 Mbp), that shared 98.7-98.8% average nucleotide identities between themselves and 'G-plasma' and exhibited a high genome conservation even within their genomic islands, despite their remote geographical localisations. Facultatively anaerobic heterotrophs, they possess an ancestral form of A-type terminal oxygen reductase from a distinct parental clade. The lack of complete pathways for biosynthesis of histidine, valine, leucine, isoleucine, lysine and proline pre-determines the reliance on external sources of amino acids and hence the lifestyle of these organisms as scavengers of proteinaceous compounds from surrounding microbial community members. In contrast to earlier metagenomics-based assumptions, isolates were S-layer-deficient, non-motile, non-methylotrophic and devoid of iron-oxidation despite the abundance of methylotrophy substrates and ferrous iron in situ, which underlines the essentiality of experimental validation of bioinformatic predictions

    Parent formulation at the Lagrangian level

    Full text link
    The recently proposed first-order parent formalism at the level of equations of motion is specialized to the case of Lagrangian systems. It is shown that for diffeomorphism-invariant theories the parent formulation takes the form of an AKSZ-type sigma model. The proposed formulation can be also seen as a Lagrangian version of the BV-BRST extension of the Vasiliev unfolded approach. We also discuss its possible interpretation as a multidimensional generalization of the Hamiltonian BFV--BRST formalism. The general construction is illustrated by examples of (parametrized) mechanics, relativistic particle, Yang--Mills theory, and gravity.Comment: 26 pages, discussion of the truncation extended, typos corrected, references adde

    Prediction of muscle fiber composition using multiple repetition testing

    Get PDF
    Direct determination of muscle fiber composition is invasive and expensive, with indirect methods also requiring specialist resources and expertise. Performing resistance exercises at 80% 1RM is suggested as a means of indirectly estimating muscle fiber composition, though this hypothesis has never been validated against a direct method. The aim of the study was to investigate the relationship between the number of completed repetitions at 80% 1RM of back squat exercise and muscle fiber composition. Thirty recreationally active participants’ (10 females, 20 males) 1RM back squat load was determined, before the number of consecutive repetitions at 80% 1RM was recorded. The relationship between the number of repetitions and the percentage of fast-twitch fibers from vastus lateralis was investigated. The number of completed repetitions ranged from 5 to 15 and was independent of sex, age, 1RM, training frequency, training type, training experience, BMI or muscle fiber cross-sectional area. The percentage of fast-twitch muscle fibers was inversely correlated with the number of repetitions completed (r = –0.38, P = 0.039). Participants achieving 5 to 8 repetitions (n = 10) had significantly more fast-twitch muscle fibers (57.5 ± 9.5 vs 44.4 ± 11.9%, P = 0.013) than those achieving 11–15 repetitions (n = 11). The remaining participants achieved 9 or 10 repetitions (n = 9) and on average had equal proportion of fast- and slow-twitch muscle fibers. In conclusion, the number of completed repetitions at 80% of 1RM is moderately correlated with muscle fiber composition
    • …
    corecore