24 research outputs found

    Fas-Independent T-Cell Apoptosis by Dendritic Cells Controls Autoimmune Arthritis in MRL/lpr Mice

    Get PDF
    Background: Although autoimmunity in MRL/lpr mice occurs due to a defect in Fas-mediated cell death of T cells, the role of Fas-independent apoptosis in pathogenesis has rarely been investigated. We have recently reported that receptor activator of nuclear factor (NF)-kB ligand (RANKL)-activated dendritic cells (DCs) play a key role in the pathogenesis of rheumatoid arthritis (RA) in MRL/lpr mice. We here attempted to establish a new therapeutic strategy with RANKL-activated DCs in RA by controlling apoptosis of peripheral T cells. Repeated transfer of RANKL-activated DCs into MRL/lpr mice was tested to determine whether this had a therapeutic effect on autoimmunity. Methods and Finding: Cellular and molecular mechanisms of Fas-independent apoptosis of T cells induced by the DCs were investigated by in vitro and in vivo analyses. We demonstrated that repeated transfers of RANKL-activated DCs into MRL/lpr mice resulted in therapeutic effects on RA lesions and lymphoproliferation due to declines of CD4+ T, B, and CD4‾CD8‾ double negative (DN) T cells. We also found that the Fas-independent T-cell apoptosis was induced by a direct interaction between tumor necrosis factor (TNF)-related apoptosis-inducing ligand-receptor 2 (TRAIL-R2) on T cells and TRAIL on Fas-deficient DCs in MRL/lpr mice. Conclusion: These results strongly suggest that a novel Fas-independent apoptosis pathway in T cells maintains peripheral tolerance and thus controls autoimmunity in MRL/lpr mice

    キサンチンオキシダーゼ阻害薬febuxostatはNrf2を活性化し脂肪細胞分化を抑制する

    Get PDF
    Xanthine oxidoreductase (XOR) is a rate-limiting enzyme in purine catabolism that acts as a novel regulator of adipogenesis. In pathological states, xanthine oxidoreductase activity increases to produce excess reactive oxygen species (ROS). The nuclear factor erythroid 2-related factor 2 (Nrf2) is a critical inducer of antioxidants, which is bound and repressed by a kelch-like ECH-associated protein 1 (Keap1) in the cytoplasm. The Keap1-Nrf2 axis appears to be a major mechanism for robust inducible antioxidant defenses. Here, we demonstrate that febuxostat, a xanthine oxidase inhibitor, alleviates the increase in adipose tissue mass in obese mouse models with a high-fat diet or ovariectomy. Febuxostat disrupts in vitro adipocytic differentiation in adipogenic media. Adipocytes appeared at day 7 in absence or presence of febuxostat were 160.8 ± 21.2 vs. 52.5 ± 12.7 (p < 0.01) in 3T3–L1 cells, and 126.0 ± 18.7 vs. 55.3 ± 13.4 (p < 0.01) in 10T1/2 cells, respectively. Adipocyte differentiation was further enhanced by the addition of hydrogen peroxide, which was also suppressed by febuxostat. Interestingly, febuxostat, but not allopurinol (another xanthine oxidase inhibitor), rapidly induced the nuclear translocation of Nrf2 and facilitated the degradation of Keap1, similar to the electrophilic Nrf2 activator omaveloxolone. These results suggest that febuxostat alleviates adipogenesis under oxidative conditions, at least in part by suppressing ROS production and Nrf2 activation. Regulation of adipocytic differentiation by febuxostat is expected to inhibit obesity due to menopause or overeating

    LL-Z1640-2 for rheumatoid arthritis

    Get PDF
    Objectives: Aberrant NLRP3 inflammasome activation has been demonstrated in rheumatoid arthritis (RA), which may contribute to debilitating inflammation and bone destruction. Here, we explored the efficacy of the potent TGF-β-activated kinase-1 (TAK1) inhibitor LL-Z1640-2 (LLZ) on joint inflammation and bone destruction in collagen-induced arthritis (CIA). Methods: LL-Z1640-2 was administered every other day in CIA mice. Clinical and histological evaluation was performed. Priming and activation of NLRP3 inflammasome and osteoclastogenic activity were assessed. Results: NLRP3 inflammasome formation was observed in synovial macrophages and osteoclasts (OCs) in CIA mice. TACE and RANKL were also overexpressed in synovial macrophages and fibroblasts, respectively, in the CIA joints. Treatment with LLZ mitigated all the above changes. As a result, LLZ markedly suppressed synovial hypertrophy and pannus formation to alleviate pain and inflammation in CIA mice. LLZ could block the priming and activation of NLRP3 inflammasome in RAW264.7 macrophage cell line, primary bone marrow macrophages and OCs upon treatment with LPS followed by ATP, thereby suppressing their IL-1β production. LLZ also suppressed LPS-induced production of TACE and TNF-α in bone marrow macrophages and abolished IL-1β-induced production of MMP-3, IL-6 and RANKL in synovial fibroblasts. In addition, LLZ directly inhibits RANKL-mediated OC formation and activation. Conclusion: TAK1 inhibition with LLZ may become a novel treatment strategy to effectively alleviate inflammasome-mediated inflammation and RANKL-induced osteoclastic bone destruction in joints alongside its potent suppression of TNF-α and IL-6 production and proteinase-mediated pathological processes in RA

    RANKLが誘導する破骨細胞分化におけるROSの役割と、Febuxostatによる破骨細胞分化抑制効果

    Get PDF
    Receptor activator of NF-κB ligand (RANKL), a critical mediator of osteoclastogenesis, is upregulated in multiple myeloma (MM). The xanthine oxidase inhibitor febuxostat, clinically used for prevention of tumor lysis syndrome, has been demonstrated to effectively inhibit not only the generation of uric acid but also the formation of reactive oxygen species (ROS). ROS has been demonstrated to mediate RANKL-mediated osteoclastogenesis. In the present study, we therefore explored the role of cancer-treatment-induced ROS in RANKL-mediated osteoclastogenesis and the suppressive effects of febuxostat on ROS generation and osteoclastogenesis. RANKL dose-dependently induced ROS production in RAW264.7 preosteoclastic cells; however, febuxostat inhibited the RANKL-induced ROS production and osteoclast (OC) formation. Interestingly, doxorubicin (Dox) further enhanced RANKL-induced osteoclastogenesis through upregulation of ROS production, which was mostly abolished by addition of febuxostat. Febuxostat also inhibited osteoclastogenesis enhanced in cocultures of bone marrow cells with MM cells. Importantly, febuxostat rather suppressed MM cell viability and did not compromise Dox’s anti-MM activity. In addition, febuxostat was able to alleviate pathological osteoclastic activity and bone loss in ovariectomized mice. Collectively, these results suggest that excessive ROS production by aberrant RANKL overexpression and/or anticancer treatment disadvantageously impacts bone, and that febuxostat can prevent the ROS-mediated osteoclastic bone damage

    CIP2A-PP2A in myeloma

    Get PDF
    The serine/threonine kinase TAK1 is constitutively overexpressed and auto-phosphorylated in multiple myeloma (MM) cells. Protein phosphatase 2A (PP2A) is a major serine/threonine phosphatase which dephosphorylates proteins phosphorylated by various serine/threonine kinases to regulate multiple cellular functions. We recently reported that the serine/threonine kinase TGF-β-activated kinase-1 (TAK1) is highly expressed and auto-phosphorylated to mediate critical growth and survival signaling in MM cells. We demonstrate here that regulation of PP2A activity inversely affects the phosphorylation levels of TAK1 in MM cells, and that MM cells aberrantly overexpress cancerous inhibitor of PP2A (CIP2A), an endogenous inhibitor for PP2A. CIP2A gene silencing as well as treatment with the CIP2A inhibitor TD52 potently induced MM cell death along with suppression of TAK1 expression in MM cells. These results suggest the critical role of PP2A inactivation via CIP2A upregulation in TAK1 phosphorylation and its protein expression and thereby MM cell growth and survival, posing the CIP2A-PP2A axis as an important therapeutic target
    corecore