65 research outputs found
Application of molecular techniques for the assessment of microorganism diversity on cultural heritage objects
As a result of their unpredictable ability to adapt to varying environmental conditions, microorganisms inhabit different types of biological niches on Earth. Owing to the key role of microorganisms in many biogeochemical processes, trends in modern microbiology emphasize the need to know and understand the structure and function of complex microbial communities. This is particularly important if the strategy relates to microbial communities that cause biodeterioration of materials that constitute our cultural heritage. Until recently, the detection and identification of microorganisms inhabiting objects of cultural value was based only on cultivation-dependent methods. In spite of many advantages, these methods provide limited information because they identify only viable organisms capable of growth under standard laboratory conditions. However, in order to carry out proper conservation and renovation, it is necessary to
know the complete composition of microbial communities and their activity. This paper presents and characterizes modern techniques such as genetic fingerprinting and clone library construction for the assessment of microbial diversity based on molecular biology. Molecular methods represent a favourable alternative to culture dependent methods and make it possible to assess the biodiversity of microorganisms inhabiting technical materials and cultural heritage objects
Adhesive and hydrophobic properties of Pseudomonas aeruginosa and Pseudomonas cedrina associated with cosmetics
The presence of bacteria in the cosmetic production environment is often connected with non-sterile raw materials, inappropriate production lines disinfection or cross contamination. Among bacteria isolated from the environment, opportunistic pathogens can be also found, posing a risk to patients with lowered immunity. Moreover, their susceptibility to antibiotics and disinfectants is frequently decreased as they develop more complex forms - biofilms. As hydrophobicity and adhesive properties play a vital role in the colonization process the aim of this research was to determine hydrophobic, aggregative and adhesive properties of bacteria isolated from the cosmetics.Bacteria used in the research were isolated from the body balm and the cosmetic preservative (three strains of Pseudomonas aeruginosa and four strains of Pseudomonas cedrina) and identified using 16S rRNA gene sequencing. For those strains and also two reference strains (P. aeruginosa ATCC15442 and P. cedrina DSM17516) an aggregation test, hydrophobicity by two different methods (SAT and MATH) and adhesion to polystyrene by crystal violet binding assay were performed.According to the SAT method more than half of the tested strains were strongly hydrophobic. Using MATH test, it was proved that four strains (P. cedrina DSM17516 and three isolates of P. aeruginosa) were strong hydrophobes, however, the rest of the strains expressed moderate hydrophobicity. Moreover, self-aggregation was also observed and for P. aeruginosa CFII was more than 20%. All of the strains were able to adhere to polystyrene after 30 minutes contact, almost all of them (excluding P. cedrina DSM17516) indicated a moderate adhesion already after four hours of incubation. These results indicate that environmental Pseudomonas strains possess strong hydrophobic and adhesive properties, that may results in a colonization of abiotic surfaces
Antimicrobial properties of silver nanoparticles against biofilm formation by Pseudomonas aeruginosa on archaeological textiles
The aims of this work were to: (i) microscopically analyse the pre- and post-Columbian archaeological textiles using Scanning Electron Microscopy with Energy Dispersive X-Ray Analysis (SEM-EDX); (ii) microbiologically analyse the archaeological textiles (from the Southern Andean Area, La Plata Museum); (iii) determine the ability of Pseudomonas sp. isolates from archaeological textiles to biofilm formation by SEM; (iv) assess the anti-biofilm properties of AgNPs protecting cotton against Pseudomonas sp. Results showed the presence of bacteria with proteolytic and lipolytic activities on archaeological textiles, including Clostridium sp. and Pseudomonas aeruginosa. Two nucleotide sequences of 16S ribosomal RNA gene of P. aeruginosa strains were deposited in GeneBank NCBI database with accession numbers: KP842564 (strain 1) and KP842565 (strain 2). Those strains exhibited different morphological and growth characteristics: strain 1 with ability to form biofilms on archaeological textiles was rod-shaped, produced bluish-green pigment, and smaller than strain 2; and strain 2 was pleomorphic and produced brown pigment. The use of silver nanoparticles (90 ppm, φ 10–80 nm) allowed to protecting textiles against P. aeruginosa growth by 63%–97%, depending on the strain and exposition time.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicada
Antimicrobial properties of silver nanoparticles against biofilm formation by Pseudomonas aeruginosa on archaeological textiles
The aims of this work were to: (i) microscopically analyse the pre- and post-Columbian archaeological textiles using Scanning Electron Microscopy with Energy Dispersive X-Ray Analysis (SEM-EDX); (ii) microbiologically analyse the archaeological textiles (from the Southern Andean Area, La Plata Museum); (iii) determine the ability of Pseudomonas sp. isolates from archaeological textiles to biofilm formation by SEM; (iv) assess the anti-biofilm properties of AgNPs protecting cotton against Pseudomonas sp. Results showed the presence of bacteria with proteolytic and lipolytic activities on archaeological textiles, including Clostridium sp. and Pseudomonas aeruginosa. Two nucleotide sequences of 16S ribosomal RNA gene of P. aeruginosa strains were deposited in GeneBank NCBI database with accession numbers: KP842564 (strain 1) and KP842565 (strain 2). Those strains exhibited different morphological and growth characteristics: strain 1 with ability to form biofilms on archaeological textiles was rod-shaped, produced bluish-green pigment, and smaller than strain 2; and strain 2 was pleomorphic and produced brown pigment. The use of silver nanoparticles (90 ppm, φ 10–80 nm) allowed to protecting textiles against P. aeruginosa growth by 63%–97%, depending on the strain and exposition time.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicada
Pre-columbian archeological textiles: A source of pseudomonas aeruginosa with virulence attributes
Pseudomonas aeruginosa is an opportunistic pathogen associated with a broad spectrum of infections in humans. However, the pathogenicity of environmental P. aeruginosa strains, especially isolates from museums and conservation laboratories, is not widely recognized. In this study, the virulence attributes of P. aeruginosa isolated from pre-Columbian textiles were compared to those of a clinical strain. Both genetically identified environmental strains (KP842564 and KP842565) exhibited a high ability to form biofilms on abiotic surfaces and high hemolytic activity. In addition, strain KP842564 was a moderate pyocyanin producer and showed proteolytic properties toward bovine serum albumin, fibrinogen, mucin, and casein. In contrast to the clinical isolate, the environmental strainswere susceptible to all the tested antimicrobial agents. The strains also showed high bioadhesion and colonization capacity on archeological textile samples, in which wool fibers were the only source of nutrients, as confirmed by scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) analysis. This study highlights the need to identify microorganisms which inhabit historic objects, in order to avoid exposure to occupational hazards. Although the strain KP842565 exhibited only some of the examined virulence-related features, given that the production of pyocyanin and hemolysins as well as the formation of biofilm are important virulence factors of P. aeruginosa, the results indicate that these strains may present a potential health risk for humans.Fil: Rajkowska, Katarzyna. Lodz University of Technology; PoloniaFil: Otlewska, Anna. Lodz University of Technology; PoloniaFil: Guiamet, Patricia Sandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias; ArgentinaFil: Wrzosek, Henryk. Lodz University of Technology; PoloniaFil: Machnowski, Waldemar. Lodz University of Technology; Poloni
Antimicrobial properties of silver nanoparticles against biofilm formation by Pseudomonas aeruginosa on archaeological textiles
The aims of this work were to: (i) microscopically analyse the pre- and post-Columbian archaeological textiles using Scanning Electron Microscopy with Energy Dispersive X-Ray Analysis (SEM-EDX); (ii) microbiologically analyse the archaeological textiles (from the Southern Andean Area, La Plata Museum); (iii) determine the ability of Pseudomonas sp. isolates from archaeological textiles to biofilm formation by SEM; (iv) assess the anti-biofilm properties of AgNPs protecting cotton against Pseudomonas sp. Results showed the presence of bacteria with proteolytic and lipolytic activities on archaeological textiles, including Clostridium sp. and Pseudomonas aeruginosa. Two nucleotide sequences of 16S ribosomal RNA gene of P. aeruginosa strains were deposited in GeneBank NCBI database with accession numbers: KP842564 (strain 1) and KP842565 (strain 2). Those strains exhibited different morphological and growth characteristics: strain 1 with ability to form biofilms on archaeological textiles was rod-shaped, produced bluish-green pigment, and smaller than strain 2; and strain 2 was pleomorphic and produced brown pigment. The use of silver nanoparticles (90 ppm, φ 10–80 nm) allowed to protecting textiles against P. aeruginosa growth by 63%–97%, depending on the strain and exposition time.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicada
Abiotic Determinants of the Historical Buildings Biodeterioration in the Former Auschwitz II – Birkenau Concentration and Extermination Camp
The paper presents the results of a study conducted at the Auschwitz-Birkenau State Museum in Oświecim on the occurrence of biodeterioration. Visual assessment of the buildings revealed signs of deterioration of the buildings in the form of dampness, bulging and crumbling plaster, and wood fiber splitting. The external surfaces, and especially the concrete strips and ground immediately adjoining the buildings, were colonized by bryophytes, lichens, and algae. These organisms developed most intensively close to the ground on the northern sides of the buildings. Inside the buildings, molds and bacteria were not found to develop actively, while algae and wood-decaying fungi occurred locally. The factors conducive to biological corrosion in the studied buildings were excessive dampness of structural partitions close to the
ground and a relative air humidity of above 70%, which was connected to ineffective moisture insulation. The influence of temperature was smaller, as it mostly affected the quantitative composition of the microorganisms and the qualitative composition of the algae. Also the impact of light was not very strong, but it was conducive to algae growth
Metabolomic and high-throughput sequencing analysis—modern approach for the assessment of biodeterioration of materials from historic buildings
Preservation of cultural heritage is of paramount importance worldwide. Microbial colonization of construction materials, such as wood, brick, mortar and stone in historic buildings can lead to severe deterioration. The aim of the present study was to give modern insight into the phylogenetic diversity and activated metabolic pathways of microbial communities colonized historic objects located in the former Auschwitz II-Birkenau concentration and extermination camp in Oświęcim, Poland. For this purpose we combined molecular, microscopic and chemical methods. Selected specimens were examined using Field Emission Scanning Electron Microscopy (FESEM), metabolomic analysis and high-throughput Illumina sequencing. FESEM imaging revealed the presence of complex microbial communities comprising diatoms, fungi and bacteria, mainly cyanobacteria and actinobacteria, on sample surfaces. Microbial diversity of brick specimens appeared higher than that of the wood and was dominated by algae and cyanobacteria, while wood was mainly colonized by fungi. DNA sequences documented the presence of 15 bacterial phyla representing 99 genera including Halomonas, Halorhodospira, Salinisphaera, Salinibacterium, Rubrobacter, Streptomyces, Arthrobacter and 9 fungal classes represented by 113 genera including Cladosporium, Acremonium, Alternaria, Engyodontium, Penicillium, Rhizopus and Aureobasidium. Most of the identified sequences were characteristic of organisms implicated in deterioration of wood and brick. Metabolomic data indicated the activation of numerous metabolic pathways, including those regulating the production of primary and secondary metabolites, for example, metabolites associated with the production of antibiotics, organic acids and deterioration of organic compounds. The study demonstrated that a combination of electron microscopy imaging with metabolomic and genomic techniques allows to link the phylogenetic information and metabolic profiles of microbial communities and to shed new light on biodeterioration processes
Polyoxometalate‐Ionic Liquids (POM‐ILs) as anticorrosion and antibacterial coatings for natural stones
Resumen del póster presentado al RSC Chemical Nanoscience and Nanotechnology Early Careers Virtual Meeting, celebrado el 24 de marzo de 2021.Peer reviewe
Santalum genus : phytochemical constituents, biological activities and health promoting-effects
Santalum genus belongs to the family of Santalaceae,
widespread in India, Australia, Hawaii, Sri Lanka,
and Indonesia, and valued as traditional medicine,
rituals and modern bioactivities. Sandalwood is reported
to possess a plethora of bioactive compounds such as
essential oil and its components (α-santalol and β-santalol),
phenolic compounds and fatty acids. These bioactives play
important role in contributing towards biological activities
and health-promoting effects in humans. Pre-clinical
and clinical studies have shown the role of sandalwood extract as antioxidant, anti-inflammatory, antibacterial,
antifungal, antiviral, neuroleptic, antihyperglycemic, antihyperlipidemic,
and anticancer activities. Safety studies on
sandalwood essential oil (EO) and its extracts have proven
them as a safe ingredient to be utilized in health promotion.
Phytoconstituents, bioactivities and traditional uses established
sandalwood as one of the innovative materials for
application in the pharma, food, and biomedical industry.https://www.degruyter.com/view/j/znaam2023Plant Production and Soil Scienc
- …