151 research outputs found

    Classification of argentine maize landraces in heterotic groups

    Get PDF
    26-33The genetic diversity of maize (Zea mays L) is a valuable and strategic natural resource that plays a key role in the breeding progress. However, exploitation of genetic variability from landraces has not reached a significant level of utilization in breeding programs in Argentina yet. In order to establish their breeding potential, the best 15 out of a group of about 300 landraces from Argentina, were evaluated for various agronomic characters in testcrosses with five lines representing different heterotic groups. Testcrosses were evaluated in nine environments during two growing seasons. A factorial array of those landraces and tester lines was used. Differences for landraces, testers, and landrace x tester interactions were detected for ear diameter and length, ear attachment and plant height, and grain yield. Yield data were further analyzed following additive main effects (landrace and tester) and multiplicative interaction (landrace x tester) models. The first two principal components were significant and accounted for 67 percent of that interaction. The first axis was consistent with the Argentine flint vs. US dent (Mo17), and US dent (B73) vs. US dent (Mo17) heterotic patterns. The second axis exhibited a contrast between Argentine flint and US dent (B73 or B73 derived line) heterotic groups. The first two principal components of the landrace x tester interaction and mean performance of testcrosses were considered to identify eight landraces as parents of three composite populations

    A Complex Cell Division Machinery Was Present in the Last Common Ancestor of Eukaryotes

    Get PDF
    Background: The midbody is a transient complex structure containing proteins involved in cytokinesis. Up to now, it has been described only in Metazoa. Other eukaryotes present a variety of structures implied in the last steps of cell division, such as the septum in fungi or the phragmoplast in plants. However, it is unclear whether these structures are homologous (derive from a common ancestral structure) or analogous (have distinct evolutionary origins). Recently, the proteome of the hamster midbody has been characterized and 160 proteins identified. Methodology/Principal Findings: Using phylogenomic approaches, we show here that nearly all of these 160 proteins (95%) are conserved across metazoan lineages. More surprisingly, we show that a large part of the mammalian midbody components (91 proteins) were already present in the last common ancestor of all eukaryotes (LECA) and were most likely involved in the construction of a complex multi-protein assemblage acting in cell division. Conclusions/Significance: Our results indicate that the midbodies of non-mammalian metazoa are likely very similar to the mammalian one and that the ancestor of Metazoa possessed a nearly modern midbody. Moreover, our analyses support the hypothesis that the midbody and the structures involved in cytokinesis in other eukaryotes derive from a large and complex structure present in LECA, likely involved in cytokinesis. This is an additional argument in favour of the idea of a comple

    The Maternal-Effect Gene cellular island Encodes Aurora B Kinase and Is Essential for Furrow Formation in the Early Zebrafish Embryo

    Get PDF
    Females homozygous for a mutation in cellular island (cei) produce embryos with defects in cytokinesis during early development. Analysis of the cytoskeletal events associated with furrow formation reveal that these defects include a general delay in furrow initiation as well as a complete failure to form furrow-associated structures in distal regions of the blastodisc. A linkage mapping-based candidate gene approach, including transgenic rescue, shows that cei encodes the zebrafish Aurora B kinase homologue. Genetic complementation analysis between the cei mutation and aurB zygotic lethal mutations corroborate gene assignment and reveal a complex nature of the maternal-effect cei allele, which appears to preferentially affect a function important for cytokinesis in the early blastomeres. Surprisingly, in cei mutant embryos a short yet otherwise normal furrow forms in the center of the blastodisc. Furrow formation is absent throughout the width of the blastodisc in cei mutant embryos additionally mutant for futile cycle, which lack a spindle apparatus, showing that the residual furrow signal present in cei mutants is derived from the mitotic spindle. Our analysis suggests that partially redundant signals derived from the spindle and astral apparatus mediate furrow formation in medial and distal regions of the early embryonic blastomeres, respectively, possibly as a spatial specialization to achieve furrow formation in these large cells. In addition, our data also suggest a role for Cei/AurB function in the reorganization of the furrow-associated microtubules in both early cleavage- and somite-stage embryos. In accordance with the requirement for cei/aurB in furrow induction in the early cleavage embryo, germ plasm recruitment to the forming furrow is also affected in embryos lacking normal cei/aurB function

    Proliferating versus differentiating stem and cancer cells exhibit distinct midbody-release behaviour

    Get PDF
    The central portion of the midbody, a cytoplasmic bridge between nascent daughter cells at the end of cell division, has generally been thought to be retained by one of the daughter cells, but has, recently, also been shown to be released into the extracellular space. The significance of midbody-retention versus -release is unknown. Here we show, by quantitatively analysing midbody-fate in various cell lines under different growth conditions, that the extent of midbody-release is significantly greater in stem cells than cancer-derived cells. Induction of cell differentiation is accompanied by an increase in midbody-release. Knockdown of the endosomal sorting complex required for transport family members, Alix and tumour-suppressor gene 101, or of their interaction partner, centrosomal protein 55, impairs midbody-release, suggesting mechanistic similarities to abscission. Cells with such impaired midbody-release exhibit enhanced responsiveness to a differentiation stimulus. Taken together, midbody-release emerges as a characteristic feature of cells capable of differentiation

    Vision, challenges and opportunities for a Plant Cell Atlas

    Get PDF
    With growing populations and pressing environmental problems, future economies will be increasingly plant-based. Now is the time to reimagine plant science as a critical component of fundamental science, agriculture, environmental stewardship, energy, technology and healthcare. This effort requires a conceptual and technological framework to identify and map all cell types, and to comprehensively annotate the localization and organization of molecules at cellular and tissue levels. This framework, called the Plant Cell Atlas (PCA), will be critical for understanding and engineering plant development, physiology and environmental responses. A workshop was convened to discuss the purpose and utility of such an initiative, resulting in a roadmap that acknowledges the current knowledge gaps and technical challenges, and underscores how the PCA initiative can help to overcome them.National Science Foundation 1916797 David W Ehrhardt, Kenneth D Birnbaum, Seung Yon Rhee; National Science Foundation 2052590 Seung Yon Rhe

    The Radially Swollen 4 Separase Mutation of Arabidopsis thaliana Blocks Chromosome Disjunction and Disrupts the Radial Microtubule System in Meiocytes

    Get PDF
    The caspase-family protease, separase, is required at the onset of anaphase to cleave the cohesin complex that joins replicated sister chromatids. However, in various eukaryotes, separase has acquired additional and distinct functions. A single amino-acid substitution in separase is responsible for phenotypes of the Arabidopsis thaliana mutant, radially swollen 4 (rsw4). This is a conditional mutant, resembling the wild type at the permissive temperature (∼20°C) and expressing mutant phenotypes at the restrictive temperature (∼30°C). Root cells in rsw4 at the restrictive temperature undergo non-disjunction and other indications of the loss of separase function. To determine to what extent separase activity remains at 30°C, we examined the effect of the mutation on meiosis, where the effects of loss of separase activity through RNA interference are known; and in addition, we examined female gametophyte development. Here, we report that, at the restrictive temperature, replicated chromosomes in rsw4 meiocytes typically fail to disjoin and the cohesin complex remains at centromeres after metaphase. Meiotic spindles appear normal in rsw4 male meiocytes; however the mutation disrupts the radial microtubule system, which is replaced by asymmetric arrays. Surprisingly, female gametophyte development was relatively insensitive to loss of separase activity, through either rsw4 or RNAi. These effects confirm that phenotypes in rsw4 result from loss of separase activity and establish a role for separase in regulating cell polarization following male meiosis

    Factors Affecting Infestation by Triatoma infestans in a Rural Area of the Humid Chaco in Argentina: A Multi-Model Inference Approach

    Get PDF
    Vector-borne transmission of Chagas disease remains a major public health problem in parts of Latin America. Triatoma infestans is the main vector in the countries located in the South American Cone, particularly in the Gran Chaco ecoregion where residual insecticide control has achieved only a moderate, irregular impact. To contribute to improved control strategies, we analyzed the factors associated with the presence and abundance of T. infestans in 327 inhabited houses in a well-defined rural area with no recent vector control interventions in the humid Argentine Chaco. Bugs were found mainly in domiciles, kitchens, storerooms, and chicken coops and nests, particularly where adequate refuge and animal hosts (humans, dogs, cats or poultry) were available. Domiciles constructed from mud were the most often infested, but brick-and-cement domiciles, even in good conditions, were also found infested. Availability of refuge and hosts for T. infestans are key targets for vector control. Ten-fold variations in domestic infestation observed across neighboring villages, and differences in the relevant factors for T. infestans presence with respect to other areas of the Gran Chaco region suggest that host management, building techniques and insecticide use need to be tailored to the local environment, socio-economic characteristics, and climatic conditions
    corecore