79 research outputs found

    Melting in the Fe–C system to 70 GPa

    Get PDF
    We determined high-pressure melting curves for Fe₃C, Fe₇C₃ and the Fe-Fe₃C eutectic using laser-heated diamond anvil cell techniques. The principal criterion for melting is the observation of plateaus in the temperature vs. laser power function, which is an expected behavior at isobaric invariant points (e.g. congruent, eutectic, or peritectic melting) as increased power provides the latent heat of melting. We verified this technique by reproducing the melting curves of well-studied congruently melting compounds at high pressure (Fe, Pt, FeS, Pb), and by comparison with melting determinations made using thermocouple-based large-volume press techniques. The incongruent melting curve of Fe₃C measured to 70 GPa has an apparent change in slope at ~ 8 GPa, which we attribute to stabilization of FeC₃ at the solidus and the creation of a P-T invariant point. We observe that Fe₇C₃ melts at higher temperatures than Fe₃C between 14 and 52 GPa and has a steep P-T slope, and on this basis predicts an expanding field of Fe₇C₃ + liquid with pressure. The Fe-Fe₃C eutectic melting curve measured to 70 GPa agrees closely with multi-anvil data and thermodynamic calculations. We also measured the eutectic composition as a function of pressure using an in situ X-radiographic imaging technique, and find a rapid drop in carbon in the eutectic composition above about 20 GPa, generally consistent with previous thermodynamic calculations, and predict that the eutectic lies close to pure iron by ~ 50 GPa. We use these observations to extrapolate phase relations to core-relevant pressures. Convergence of the Fe₃C and Fe-Fe₃C eutectic melting curves indicate that Fe₃C is replaced at the solidus by Fe₇C₃ at ~ 120 GPa, forming another P-T invariant point and a new eutectic between Fe and Fe₇C₃. Thus, Fe₃C is unlikely to be an important crystallizing phase at core conditions, whereas Fe₇C₃ could become an important crystallizing phase.11 page(s

    Hydrous silicate melts and the deep mantle H2O cycle

    Get PDF
    We report ab initio atomistic simulations of hydrous silicate melts under deep upper mantle to shallow lower mantle conditions and use them to parameterise density and viscosity across the ternary system MgO-SiO2-H2O (MSH). On the basis of phase relations in the MSH system, primary hydrous partial melts of the mantle have 40-50 mol% H2O. Our results show that these melts will be positively buoyant at the upper and lower boundaries of the mantle transition zone except in very iron-rich compositions, where ≳ 75% Mg is substituted by Fe. Hydrous partial melts will also be highly inviscid. Our results indicate that if melting occurs when wadsleyite transforms to olivine at 410 km, melts will be buoyant and ponding of melts is unexpected. Box models of mantle circulation incorporating the upward mobility of partial melts above and below the transition zone suggest that the upper mantle becomes efficiently hydrated at the expense of the transition zone such that large differences in H2O concentration between the upper mantle, transition zone and lower mantle are difficult to maintain on timescales of mantle recycling. The MORB source mantle with ∼0.02-0.04 wt% H2O may be indicative of the H2O content of the transition zone and lower mantle, resulting in a bulk mantle H2O content of the order 0.5 to 1 ocean mass, which is consistent with geochemical constraints and estimates of subduction ingassing

    The NiSi melting curve to 70 GPa

    Get PDF
    The melting curve of NiSi has been determined to 70 GPa on the basis of laser-heated diamond anvil cell (LH-DAC) experiments in which changes in the gradient of temperature vs. laser power functions were used as the melting criterion. The melting curve was corroborated with in situ X-ray diffraction experiments in both the LH-DAC and multi-anvil press in which the appearance of liquid diffuse scattering in the diffraction patterns was used as the melting criterion. At all pressures, the NiSi melting curve is lower than that of FeSi, with the difference in melting temperature reaching a maximum of 900 K at 14 GPa. The location of the B31 + B20 + L triple point has been constrained to 12 ± 2 GPa and 1550 ± 100 K and the B20 + B2 + L triple point to 28.5 ± 1.5 GPa and 2165 ± 60 K. On the basis of the in situ LH-DAC experiments the Clapeyron slope of the B20 → B2 transition is estimated at −67 MPa K−1. Extrapolation of the B2-NiSi liquidus to core-mantle boundary (CMB) conditions (135 GPa) suggests the melting point of NiSi (3700 ± 400 K) will be only marginally lower than that of isostructural FeSi (4000 ± 200 K). Thus any (Fe,Ni)Si solid solution present within the D″ layer is expected to remain solid, with the possible exception of the very hottest region adjacent to the CMB

    A longitudinal twin study of the association between childhood autistic traits and psychotic experiences in adolescence

    Get PDF
    - Background: This twin study investigated whether autistic traits during childhood were associated with adolescent psychotic experiences. - Methods: Data were collected from a community sample of approximately 5000 twin pairs, which included 32 individuals with diagnosed autism spectrum conditions (ASC). Parents rated autistic traits in the twins at four points between ages 8–16 years. Positive, negative, and cognitive psychotic experiences were assessed at age 16 years using self- and parent-report scales. Longitudinal twin analyses tested the associations between these measures. - Results: Autistic traits correlated weakly or nonsignificantly with positive psychotic experiences (paranoia, hallucinations, and grandiosity), and modestly with cognitive psychotic experiences (cognitive disorganisation). Higher correlations were observed for parent-rated negative symptoms and self-reported anhedonia, although the proportion of variance in both accounted for by autistic traits was low (10 and 31 %, respectively). The majority of the genetic influences on negative symptoms and anhedonia were independent of autistic traits. Additionally, individuals with ASC displayed significantly more negative symptoms, anhedonia, and cognitive disorganisation than controls. - Conclusions: Autistic traits do not appear to be strongly associated with psychotic experiences in adolescence; associations were also largely restricted to negative symptoms. Of note, the degree to which the genetic and environmental causes of autistic traits influenced psychotic experiences was limited. These findings thus support a phenotypic and etiological distinction between autistic traits and psychotic experiences

    Experimental and theoretical confirmation of an orthorhombic phase transition in niobium at high pressure and temperature

    Get PDF
    Compared to other body-centered cubic (bcc) transition metals, Nb has been the subject of fewer compression studies and there are still aspects of its phase diagram which are unclear. Here, we report a combined theoretical and experimental study of Nb under high pressure and temperature. We present the results of static laser-heated diamond anvil cell experiments up to 120 GPa using synchrotron-based fast x-ray diffraction combined with ab initio quantum molecular dynamics simulations. The melting curve of Nb is determined and evidence for a solid-solid phase transformation in Nb with increasing temperature is found. The high-temperature phase of Nb is orthorhombic Pnma. The bcc-Pnma transition is clearly seen in the experimental data on the Nb principal Hugoniot. The bcc-Pnma coexistence observed in our experiments is explained. Agreement between the measured and calculated melting curves is very good except at 40–60 GPa where three experimental points lie below the theoretical melting curve by 250 K (or 7%); a possible explanation is given
    corecore