32 research outputs found
Identification and characterization of a rich population of CD34mesenchymal stem/stromal cells in human parotid, sublingual and submandibular glands
Mesenchymal stem/stromal cells (MSCs) play crucial roles in maintaining tissue homeostasis during physiological turnovers and injuries. Very little is known about the phenotype, distribution and molecular nature of MSCs in freshly isolated human salivary glands (SGs) as most reports have focused on the analysis of cultured MSCs. Our results demonstrate that the cell adhesion molecule CD34 was widely expressed by the MSCs of human major SGs, namely parotid (PAG), sublingual (SLG) and submandibular (SMG) glands. Further, gene expression analysis of CD34+ cells derived from fetal SMGs showed significant upregulation of genes involved in cellular adhesion, proliferation, branching, extracellular matrix remodeling and organ development. Moreover, CD34+ SMG cells exhibited elevated expression of genes encoding extracellular matrix, basement membrane proteins, and members of ERK, FGF and PDGF signaling pathways, which play key roles in glandular development, branching and homeostasis. In vitro CD34+ cell derived SG-MSCs revealed multilineage differentiation potential. Intraglandular transplantation of cultured MSCs in immunodeficient mice led to their engraftment in the injected and uninjected contralateral and ipsilateral glands. Engrafted cells could be localized to the stroma surrounding acini and ducts. In summary, our data show that CD34+ derived SG-MSCs could be a promising cell source for adoptive cell-based SG therapies, and bioengineering of artificial SGs
Multipotency and cardiomyogenic potential of human adipose-derived stem cells from epicardium, pericardium, and omentum
BACKGROUND: Acute myocardial infarction (MI) leads to an irreversible loss of proper cardiac function. Application of stem cell therapy is an attractive option for MI treatment. Adipose tissue has proven to serve as a rich source of stem cells (ADSCs). Taking into account the different morphogenesis, anatomy, and physiology of adipose tissue, we hypothesized that ADSCs from different adipose tissue depots may exert a diverse multipotency and cardiogenic potential. METHODS: The omental, pericardial, and epicardial adipose tissue samples were obtained from organ donors and patients undergoing heart transplantation at our institution. Human foreskin fibroblasts were used as the control group. Isolated ADSCs were analyzed for adipogenic and osteogenic differentiation capacity and proliferation potential. The immunophenotype and constitutive gene expression of alkaline phosphatase (ALP), GATA4, Nanog, and OCT4 were analyzed. DNA methylation inhibitor 5-azacytidine was exposed to the cells to stimulate the cardiogenesis. Finally, reprogramming towards cardiomyocytes was initiated with exogenous overexpression of seven transcription factors (ESRRG, GATA4, MEF2C, MESP1, MYOCD, TBX5, ZFPM2) previously applied successfully for fibroblast transdifferentiation toward cardiomyocytes. Expression of cardiac troponin T (cTNT) and alpha-actinin (Actn2) was analyzed 3 weeks after initiation of the cardiac differentiation. RESULTS: The multipotent properties of isolated plastic adherent cells were confirmed with expression of CD29, CD44, CD90, and CD105, as well as successful differentiation toward adipocytes and osteocytes; with the highest osteogenic and adipogenic potential for the epicardial and omental ADSCs, respectively. Epicardial ADSCs demonstrated a lower doubling time as compared with the pericardium and omentum-derived cells. Furthermore, epicardial ADSCs revealed higher constitutive expression of ALP and GATA4. Increased Actn2 and cTNT expression was observed after the transduction of seven reprogramming factors, with the highest expression in the epicardial ADSCs, as compared with the other ADSC subtypes and fibroblasts. CONCLUSIONS: Human epicardial ADSCs revealed a higher cardiomyogenic potential as compared with the pericardial and omental ADSC subtypes as well as the fibroblast counterparts. Epicardial ADSCs may thus serve as the valuable subject for further studies on more effective methods of adult stem cell differentiation toward cardiomyocytes