92 research outputs found

    Two new aflatoxin producing species, and an overview of Aspergillus section Flavi

    Get PDF
    Aspergillus subgenus Circumdati section Flavi includes species with usually biseriate conidial heads, in shades of yellow-green to brown, and dark sclerotia. Several species assigned to this section are either important mycotoxin producers including aflatoxins, cyclopiazonic acid, ochratoxins and kojic acid, or are used in oriental food fermentation processes and as hosts for heterologous gene expression. A polyphasic approach was applied using morphological characters, extrolite data and partial calmodulin, β-tubulin and ITS sequences to examine the evolutionary relationships within this section. The data indicate that Aspergillus section Flavi involves 22 species, which can be grouped into seven clades. Two new species, A. pseudocaelatus sp. nov. and A. pseudonomius sp. nov. have been discovered, and can be distinguished from other species in this section based on sequence data and extrolite profiles. Aspergillus pseudocaelatus is represented by a single isolate collected from Arachis burkartii leaf in Argentina, is closely related to the non-aflatoxin producing A. caelatus, and produces aflatoxins B & G, cyclopiazonic acid and kojic acid, while A. pseudonomius was isolated from insects and soil in the USA. This species is related to A. nomius, and produces aflatoxin B1 (but not G-type aflatoxins), chrysogine and kojic acid. In order to prove the aflatoxin producing abilities of the isolates, phylogenetic analysis of three genes taking part in aflatoxin biosynthesis, including the transcriptional regulator aflR, norsolonic acid reductase and O-methyltransferase were also carried out. A detailed overview of the species accepted in Aspergillus section Flavi is presented

    Management of acute hypercortisolism

    Full text link
    An occasional patient with Cushing's syndrome may require urgent management primarily because the chronic ravages of hypercortisolism have caused the patient to be in a precarious metabolic condition. The side effects of prolonged excess corticosteroids increase the risk of operations in such patients and must be considered in overall management. Among the many effects of hypercortisolism to be considered are hypertension, diabetes, ocular hypertension, myopathies, dermatologic changes including skin infection, pancreatitis, osteoporosis, pathological fractures, peptic ulcers, renal calculi, coagulopathies, hypokalemia, poor wound healing, and increased susceptibility to infection. The most effective way to avert these complications is by earlier diagnosis and definitive treatment of Cushing's syndrome. The present report includes a review of the etiology and diagnosis of Cushing's syndrome and the management of problems associated with hypercortisolism . Il est possible qu'un malade atteint de maladie de Cushing ait besoin d'être traité sans attente en raisons de troubles métaboliques sévères dus aux effets nocifs de l'hypercortisolisme chronique qui augmentent les risques opératoires et doivent être pris en considération avant tout traitement. Il en est ainsi de l'hypertension, du diabète, de l'hypertension intra-oculaire, des lésions dermiques comprenant l'infection cutanée, la pancréatite, l'ostéoporose, les fractures pathologiques, l'ulcère peptique, les calculs rénaux, les coagulopathies, l'hypokaliémie, la lenteur du processus de cicatrisation et l'augmentation de la suceptibilité à l'infection.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41309/1/268_2005_Article_BF01655367.pd

    Evaluation of phytase concentration needed for growing–finishing commercial turkey toms

    No full text
    1. Growth performance, serum bone markers, and bone strength and mineralisation were determined in tom turkeys grown from 9 to 17 weeks of age. 2. Dietary non-phytate phosphorus was formulated to be reduced by 1·0 g/kg in the low phosphorus diet compared to a control diet and phytase was added to provide 0, 150, 300, 450 or 600 units/kg activity to the low phosphorus diet. 3. From 9 to 12 weeks of age, body weight and gain:food were reduced by the low phosphorus diet without added phytase, compared to the adequate phosphorus diet. Increasing the concentration of phytase linearly increased these growth parameters. There were no significant growth responses at 17 weeks of age. 4. Serum osteocalcin was reduced by increasing dietary phosphorus at 12 weeks of age when growth was affected, but not at later ages. Serum pyridinoline was reduced by higher dietary phosphorus and decreased linearly with increasing phytase activity at 17 weeks of age. 5. Fracture force of the ulna and femur increased linearly with increasing phytase activity but bone strength was not affected when corrected for bone cross-sectional area. Bone strength of the ulna and ash concentration of the ulna and tibia were increased by higher dietary phosphorus. Humerus and ulna ash increased linearly with increasing phytase activity. 6. Water-soluble phosphorus content of the litter was increased by higher dietary phosphorus and addition of phytase to the low phosphorus diet. The increase in water-soluble phosphorus content of the litter when phytase was fed may indicate that phosphorus could be fed at a lower concentration than used in this trial, at least in the finisher diet when phytase is added to the food. 7. Bone fracture force, strength and ash were generally optimised when 450 units/kg phytase activity was added to the low phosphorus diet. However, growth performance was best in the grower I (9 to 12 weeks) phase when 600 units/kg phytase was added to the diet
    corecore