5,243 research outputs found

    Selective cloning of Gaussian states by linear optics

    Full text link
    We investigate the performances of a selective cloning machine based on linear optical elements and Gaussian measurements, which allows to clone at will one of the two incoming input states. This machine is a complete generalization of a 1 to 2 cloning scheme demonstrated by U. L. Andersen et al. [Phys. Rev. Lett. vol. 94, 240503 (2005)]. The input-output fidelity is studied for generic Gaussian input state and the effect of non-unit quantum efficiency is also taken into account. We show that if the states to be cloned are squeezed states with known squeezing parameter, then the fidelity can be enhanced using a third suitable squeezed state during the final stage of the cloning process. A binary communication protocol based on the selective cloning machne is also discussed.Comment: 6 pages, 6 figure

    Characterization of qubit chains by Feynman probes

    Get PDF
    We address the characterization of qubit chains and assess the performances of local measurements compared to those provided by Feynman probes, i.e. nonlocal measurements realized by coupling a single qubit regis- ter to the chain. We show that local measurements are suitable to estimate small values of the coupling and that a Bayesian strategy may be successfully exploited to achieve optimal precision. For larger values of the coupling Bayesian local strategies do not lead to a consistent estimate. In this regime, Feynman probes may be exploited to build a consistent Bayesian estimator that saturates the Cram\'er-Rao bound, thus providing an effective characterization of the chain. Finally, we show that ultimate bounds to precision, i.e. saturation of the quantum Cram\'er-Rao bound, may be achieved by a two-step scheme employing Feynman probes followed by local measurements.Comment: 8 pages, 5 figure

    Giant planets around two intermediate-mass evolved stars and confirmation of the planetary nature of HIP67851 c

    Full text link
    Precision radial velocities are required to discover and characterize planets orbiting nearby stars. Optical and near infrared spectra that exhibit many hundreds of absorption lines can allow the m/s precision levels required for such work. However, this means that studies have generally focused on solar-type dwarf stars. After the main-sequence, intermediate-mass stars (former A-F stars) expand and rotate slower than their progenitors, thus thousands of narrow absorption lines appear in the optical region, permitting the search for planetary Doppler signals in the data for these types of stars. We present the discovery of two giant planets around the intermediate-mass evolved star HIP65891 and HIP107773. The best Keplerian fit to the HIP65891 and HIP107773 radial velocities leads to the following orbital parameters: P=1084.5 d; mb_bsinii = 6.0 Mjup_{jup}; ee=0.13 and P=144.3 d; mb_bsinii = 2.0 Mjup_{jup}; ee=0.09, respectively. In addition, we confirm the planetary nature of the outer object orbiting the giant star HIP67851. The orbital parameters of HIP67851c are: P=2131.8 d, mc_csinii = 6.0 Mjup_{jup} and ee=0.17. With masses of 2.5 M⊙_\odot and 2.4 M⊙_\odot HIP65891 and HIP107773 are two of the most massive stars known to host planets. Additionally, HIP67851 is one of five giant stars that are known to host a planetary system having a close-in planet (a<a < 0.7 AU). Based on the evolutionary states of those five stars, we conclude that close-in planets do exist in multiple systems around subgiants and slightly evolved giants stars, but probably they are subsequently destroyed by the stellar envelope during the ascent of the red giant branch phase. As a consequence, planetary systems with close-in objects are not found around horizontal branch stars.Comment: Accepted for publication in A&

    Experimental realization of a local-to-global noise transition in a two-qubit optical simulator

    Get PDF
    We demonstrate the transition from local to global noise in a two-qubit all-optical quantum simulator subject to classical random fluctuations. Qubits are encoded in the polarization degree of freedom of two entangled photons generated by parametric down-conversion (PDC) while the environment is implemented by using their spatial degrees of freedom. The ability to manipulate with high accuracy the number of correlated pixels of a spatial-light-modulator and the PDC spectral width allows us to control the transition from a scenario where the qubits are embedded in local environments to the situation where they are subject to the same global noise. We witness the transition by monitoring the decoherence of the two-qubit state

    Experimental investigation of the effect of classical noise on quantum non-Markovian dynamics

    Get PDF
    We provide an experimental study of the relationship between the action of different classical noises on the dephasing dynamics of a two-level system and the non-Markovianity of the quantum dynamics. The two-level system is encoded in the photonic polarization degrees of freedom and the action of the noise is obtained via a spatial light modulator, thus allowing for an easy engineering of different random environments. The quantum non-Markovianity of the dynamics driven by classical Markovian and non-Markovian noise, both Gaussian and non-Gaussian, is studied by means of the trace distance. Our study clearly shows the different nature of the notion of non-Markovian classical process and non-Markovian quantum dynamics

    Photonic realization of a quantum finite automaton

    Get PDF
    We describe a physical implementation of a quantum finite automaton that recognizes a well-known family of periodic languages. The realization exploits the polarization degree of freedom of single photons and their manipulation through linear optical elements. We use techniques of confidence amplification to reduce the acceptance error probability of the automaton. It is worth remarking that the quantum finite automaton we physically realize is not only interesting per se but it turns out to be a crucial building block in many quantum finite automaton design frameworks theoretically settled in the literature

    Optimal estimation of entanglement

    Full text link
    Entanglement does not correspond to any observable and its evaluation always corresponds to an estimation procedure where the amount of entanglement is inferred from the measurements of one or more proper observables. Here we address optimal estimation of entanglement in the framework of local quantum estimation theory and derive the optimal observable in terms of the symmetric logarithmic derivative. We evaluate the quantum Fisher information and, in turn, the ultimate bound to precision for several families of bipartite states, either for qubits or continuous variable systems, and for different measures of entanglement. We found that for discrete variables, entanglement may be efficiently estimated when it is large, whereas the estimation of weakly entangled states is an inherently inefficient procedure. For continuous variable Gaussian systems the effectiveness of entanglement estimation strongly depends on the chosen entanglement measure. Our analysis makes an important point of principle and may be relevant in the design of quantum information protocols based on the entanglement content of quantum states.Comment: 9 pages, 2 figures, v2: minor correction

    Incomplete quantum process tomography and principle of maximal entropy

    Full text link
    The main goal of this paper is to extend and apply the principle of maximum entropy (MaxEnt) to incomplete quantum process estimation tasks. We will define a so-called process entropy function being the von Neumann entropy of the state associated with the quantum process via Choi-Jamiolkowski isomorphism. It will be shown that an arbitrary process estimation experiment can be reformulated in a unified framework and MaxEnt principle can be consistently exploited. We will argue that the suggested choice for the process entropy satisfies natural list of properties and it reduces to the state MaxEnt principle, if applied to preparator devices.Comment: 8 pages, comments welcome, references adde

    Matter density perturbations in interacting quintessence models

    Get PDF
    Models with dark energy decaying into dark matter have been proposed to solve the coincidence problem in cosmology. We study the effect of such coupling in the matter power spectrum. Due to the interaction, the growth of matter density perturbations during the radiation dominated regime is slower compared to non-interacting models with the same ratio of dark matter to dark energy today. This effect introduces a damping on the power spectrum at small scales proportional to the strength of the interaction and similar to the effect generated by ultrarelativistic neutrinos. The interaction also shifts matter--radiation equality to larger scales. We compare the matter power spectrum of interacting quintessence models with the measurments of 2dFGRS. We particularize our study to models that during radiation domination have a constant dark matter to dark energy ratio.Comment: 11 pages, 4 figures, accepted for publication in Phys. Rev.
    • …
    corecore