15 research outputs found

    Plant Stanol Esters Lower Serum Triacylglycerol Concentrations via a Reduced Hepatic VLDL-1 Production

    Get PDF
    Plant stanol esters not only lower low density lipoprotein cholesterol but also have previously been shown to lower serum triacylglycerol (TAG) concentrations, especially in subjects with elevated TAG concentrations. To find a possible explanation, we explored changes in serum lipoprotein profiles, as measured with nuclear magnetic resonance. For this, serum samples from two parallel-designed controlled studies were evaluated before and 8 weeks after the consumption of plant stanol esters. In the first study, dyslipidemic metabolic syndrome subjects participated and in the second study normolipidemic subjects. In metabolic syndrome subjects, plant stanol esters lowered concentrations of large (>60 nm) and medium (35–60 nm) VLDL particles as compared to controls. In normolipidemic subjects, the serum concentration of large VLDL-1 particles was also lowered, although less pronounced. Based on these findings, we hypothesize that the effect of plant stanol esters on serum TAG concentrations origins from a lowered hepatic production of large TAG-rich VLDL-1 particles

    Both Transient and Continuous Corticosterone Excess Inhibit Atherosclerotic Plaque Formation in APOE*3-Leiden.CETP Mice

    Get PDF
    Contains fulltext : 118079.pdf (publisher's version ) (Open Access)INTRODUCTION: The role of glucocorticoids in atherosclerosis development is not clearly established. Human studies show a clear association between glucocorticoid excess and cardiovascular disease, whereas most animal models indicate an inhibitory effect of glucocorticoids on atherosclerosis development. These animal models, however, neither reflect long-term glucocorticoid overexposure nor display human-like lipoprotein metabolism. AIM: To investigate the effects of transient and continuous glucocorticoid excess on atherosclerosis development in a mouse model with human-like lipoprotein metabolism upon feeding a Western-type diet. METHODS: Pair-housed female APOE*3-Leiden.CETP (E3L.CETP) mice fed a Western-type containing 0.1% cholesterol for 20 weeks were given corticosterone (50 microg/ml) for either 5 (transient group) or 17 weeks (continuous group), or vehicle (control group) in the drinking water. At the end of the study, atherosclerosis severity, lesion area in the aortic root, the number of monocytes adhering to the endothelial wall and macrophage content of the plaque were measured. RESULTS: Corticosterone treatment increased body weight and food intake for the duration of the treatment and increased gonadal and subcutaneous white adipose tissue weight in transient group by +35% and +31%, and in the continuous group by +140% and 110%. Strikingly, both transient and continuous corticosterone treatment decreased total atherosclerotic lesion area by -39% without lowering plasma cholesterol levels. In addition, there was a decrease of -56% in macrophage content of the plaque with continuous corticosterone treatment, and a similar trend was present with the transient treatment. CONCLUSION: Increased corticosterone exposure in mice with human-like lipoprotein metabolism has beneficial, long-lasting effects on atherosclerosis, but negatively affects body fat distribution by promoting fat accumulation in the long-term. This indicates that the increased atherosclerosis observed in humans in states of glucocorticoid excess may not be related to cortisol per se, but might be the result of complex indirect effects of cortisol

    Modulation of gene expression in endothelial cells by hyperlipaemic postprandial serum from healthy volunteers

    No full text
    A single high-fat challenge induces plasmatic pro-inflammatory and pro-oxidative responses in the postprandial state, even in healthy men. This period is also associated with vascular endothelial dysfunction, which is an early event in the development of cardiovascular diseases. However, knowledge about the mechanisms involved in postprandial hyperlipaemia-induced endothelial dysfunction is sparse. An objective of our study was to characterize the behaviour and gene expression of vascular endothelial cells exposed to postprandial hyperlipaemic sera. Human umbilical vein endothelial cells (HUVECs) were cultured in media containing 10% serum from healthy men withdrawn either before or 4 h after a high-fat challenge. Endothelial cell proliferation, adhesion and migration were then assessed. The transcriptomic profiles of endothelial cells exposed to pre and postprandial sera were also compared. Exposure to postprandial hyperlipaemic sera significantly decreased HUVEC proliferation when compared to preprandial serum (P < 0.0001), while no changes in migration or endothelial/monocyte interactions were observed. The transcriptomic analysis revealed changes in the expression of 675 genes, of which 431 have a known function. Among them, a set of differentially expressed genes was linked to cell cycle regulation and apoptosis and are regulated in favour of cell cycle arrest or death. This result was confirmed by measuring the induction of apoptosis after postprandial sera exposure (P = 0.011). Taken together, the transcriptomic results and pathway analysis showed that postprandial serum promotes apoptosis in HUVECs, potentially through the activation of the p53 network. We conclude that upon postprandial serum exposure, vascular endothelial cells transcriptionally regulate genes involved in the control of cell cycle and death to favour growth arrest and apoptosis. These findings support the hypothesis that postprandial hyperlipaemia is associated with vascular dysfunction and offer new insights into the mechanisms involved
    corecore