1,774 research outputs found

    The Hot Bang state of massless fermions

    Get PDF
    In 2002, a method has been proposed by Buchholz et al. in the context of Local Quantum Physics, to characterize states that are locally in thermodynamic equilibrium. It could be shown for the model of massless bosons that these states exhibit quite interesting properties. The mean phase-space density satisfies a transport equation, and many of these states break time reversal symmetry. Moreover, an explicit example of such a state, called the Hot Bang state, could be found, which models the future of a temperature singularity. However, although the general results carry over to the fermionic case easily, the proof of existence of an analogue of the Hot Bang state is not quite that straightforward. The proof will be given in this paper. Moreover, we will discuss some of the mathematical subtleties which arise in the fermionic case.Comment: 17 page

    Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils

    Get PDF
    Soil carbon, a major component of the global carbon inventory, has significant potential for change with changing climate and human land use. We applied the Century ecosystem model to a series of forest and grassland sites distributed globally to examine large-scale controls over soil carbon. Key site-specific parameters influencing soil carbon dynamics are soil texture and foliar lignin content; accordingly, we perturbed these variables at each site to establish a range of carbon concentrations and turnover times. We examined the simulated soil carbon stores, turnover times, and C:N ratios for correlations with patterns of independent variables. Results showed that soil carbon is related linearly to soil texture, increasing as clay content increases, that soil carbon stores and turnover time are related to mean annual temperature by negative exponential functions, and that heterotrophic respiration originates from recent detritus (∼50%), microbial turnover (∼30%), and soil organic matter (∼20%) with modest variations between forest and grassland ecosystems. The effect of changing temperature on soil organic carbon (SOC) estimated by Century is dSOC/dT= 183e−0.034T. Global extrapolation of this relationship leads to an estimated sensitivity of soil C storage to a temperature of −11.1 Pg° C−1, excluding extreme arid and organic soils. In Century, net primary production (NPP) and soil carbon are closely coupled through the N cycle, so that as temperatures increase, accelerated N release first results in fertilization responses, increasing C inputs. The Century-predicted effect of temperature on carbon storage is modified by as much as 100% by the N cycle feedback. Century-estimated soil C sensitivity (−11.1 Pg° C−1) is similar to losses predicted with a simple data-based calculation (−14.1 Pg° C−1). Inclusion of the N cycle is important for even first-order predictions of terrestrial carbon balance. If the NPP-SOC feedback is disrupted by land use or other disturbances, then SOC sensitivity can greatly exceed that estimated in our simulations. Century results further suggest that if climate change results in drying of organic soils (peats), soil carbon loss rates can be high

    QED symmetries in real-time thermal field theory

    Get PDF
    We study the discrete and gauge symmetries of Quantum Electrodynamics at finite temperature within the real-time formalism. The gauge invariance of the complete generating functional leads to the finite temperature Ward identities. These Ward identities relate the eight vertex functions to the elements of the self-energy matrix. Combining the relations obtained from the Z2Z_2 and the gauge symmetries of the theory we find that only one out of eight longitudinal vertex functions is independent. As a consequence of the Ward identities it is shown that some elements of the vertex function are singular when the photon momentum goes to zero.Comment: New version as it will appear in Phys RevD 19 pages, RevTex, 1figur

    A note on the Landauer principle in quantum statistical mechanics

    Full text link
    The Landauer principle asserts that the energy cost of erasure of one bit of information by the action of a thermal reservoir in equilibrium at temperature T is never less than kTlog2kTlog 2. We discuss Landauer's principle for quantum statistical models describing a finite level quantum system S coupled to an infinitely extended thermal reservoir R. Using Araki's perturbation theory of KMS states and the Avron-Elgart adiabatic theorem we prove, under a natural ergodicity assumption on the joint system S+R, that Landauer's bound saturates for adiabatically switched interactions. The recent work of Reeb and Wolf on the subject is discussed and compared

    Local Operations and Completely Positive Maps in Algebraic Quantum Field Theory

    Full text link
    Einstein introduced the locality principle which states that all physical effect in some finite space-time region does not influence its space-like separated finite region. Recently, in algebraic quantum field theory, R\'{e}dei captured the idea of the locality principle by the notion of operational separability. The operation in operational separability is performed in some finite space-time region, and leaves unchanged the state in its space-like separated finite space-time region. This operation is defined with a completely positive map. In the present paper, we justify using a completely positive map as a local operation in algebraic quantum field theory, and show that this local operation can be approximately written with Kraus operators under the funnel property

    Nambu-Goldstone Mechanism in Real-Time Thermal Field Theory

    Get PDF
    In a one-generation fermion condensate scheme of electroweak symmetry breaking, it is proven based on Schwinger-Dyson equation in the real-time thermal field theory in the fermion bubble diagram approximation that, at finite temperature TT below the symmetry restoration temperature TcT_c, a massive Higgs boson and three massless Nambu-Goldstone bosons could emerge from the spontaneous breaking of electroweak group SUL(2)×UY(1)UQ(1)SU_L(2)\times U_Y(1) \to U_Q(1) if the two fermion flavors in the one generation are mass-degenerate, thus Goldstone Theorem is rigorously valid in this case. However, if the two fermion flavors have unequal masses, owing to "thermal flactuation", the Goldstone Theorem will be true only approximately for a very large momentum cut-off Λ\Lambda in zero temperature fermion loop or for low energy scales. All possible pinch singularities are proven to cancel each other, as is expected in a real-time thermal field theory.Comment: 11 pages, revtex, no figure, Phys. Rev. D, to appea

    Ghost Condensates and Dynamical Breaking of SL(2,R) in Yang-Mills in the Maximal Abelian Gauge

    Full text link
    Ghost condensates of dimension two in SU(N) Yang-Mills theory quantized in the Maximal Abelian Gauge are discussed. These condensates turn out to be related to the dynamical breaking of the SL(2,R) symmetry present in this gaugeComment: 16 pages, LaTeX2e, final version to appear in J. Phys.

    Renormalizing a BRST-invariant composite operator of mass dimension 2 in Yang-Mills theory

    Get PDF
    We discuss the renormalization of a BRST and anti-BRST invariant composite operator of mass dimension 2 in Yang-Mills theory with the general BRST and anti-BRST invariant gauge fixing term of the Lorentz type. The interest of this study stems from a recent claim that the non-vanishing vacuum condensate of the composite operator in question can be an origin of mass gap and quark confinement in any manifestly covariant gauge, as proposed by one of the authors. First, we obtain the renormalization group flow of the Yang-Mills theory. Next, we show the multiplicative renormalizability of the composite operator and that the BRST and anti-BRST invariance of the bare composite operator is preserved under the renormalization. Third, we perform the operator product expansion of the gluon and ghost propagators and obtain the Wilson coefficient corresponding to the vacuum condensate of mass dimension 2. Finally, we discuss the connection of this work with the previous works and argue the physical implications of the obtained results.Comment: 49 pages, 35 eps-files, A number of typographic errors are corrected. A paragraph is added in the beginning of section 5.3. Two equations (7.1) and (7.2) are added. A version to be published in Phys. Rev.

    Nonequilibrium Steady States and Fano-Kondo Resonances in an AB Ring with a Quantum Dot

    Full text link
    Electron transport through a strongly correlated quantum dot (QD) embedded in an Aharonov-Bohm (AB) ring is investigated with the aid of the finite-U slave-boson mean-field (SBMF) approach extended to nonequilibrium regime. A nonequilibrium steady state (NESS) of the mean-field Hamiltonian is constructed with the aid of the C*-algebraic approach for studying infinitely extended systems. In the linear response regime, the Fano-Kondo resonances and AB oscillations of the conductance obtained from the SBMF approach are in good agreement with those from the numerical renormalization group technique (NRG) by Hofstetter et al. by using twice larger Coulomb interaction. At zero temperature and finite bias voltage, the resonance peaks of the differential conductance tend to split into two. At low bias voltage, the split of the asymmetric resonance can be observed as an increase of the conductance plateau. We also found that the differential conductance has zero-bias maximum or minimum depending on the background transmission via direct tunneling between the electrodes.Comment: 24 pages,17 figure
    corecore