26 research outputs found

    Characterising paediatric mortality during and after acute illness in Sub-Saharan Africa and South Asia: a secondary analysis of the CHAIN cohort using a machine learning approach

    Get PDF
    Background A better understanding of which children are likely to die during acute illness will help clinicians and policy makers target resources at the most vulnerable children. We used machine learning to characterise mortality in the 30-days following admission and the 180-days after discharge from nine hospitals in low and middle-income countries (LMIC). Methods A cohort of 3101 children aged 2–24 months were recruited at admission to hospital for any acute illness in Bangladesh (Dhaka and Matlab Hospitals), Pakistan (Civil Hospital Karachi), Kenya (Kilifi, Mbagathi, and Migori Hospitals), Uganda (Mulago Hospital), Malawi (Queen Elizabeth Central Hospital), and Burkina Faso (Banfora Hospital) from November 2016 to January 2019. To record mortality, children were observed during their hospitalisation and for 180 days post-discharge. Extreme gradient boosted models of death within 30 days of admission and mortality in the 180 days following discharge were built. Clusters of mortality sharing similar characteristics were identified from the models using Shapley additive values with spectral clustering. Findings Anthropometric and laboratory parameters were the most influential predictors of both 30-day and post-discharge mortality. No WHO/IMCI syndromes were among the 25 most influential mortality predictors of mortality. For 30-day mortality, two lower-risk clusters (N = 1915, 61%) included children with higher-than-average anthropometry (1% died, 95% CI: 0–2), and children without signs of severe illness (3% died, 95% CI: 2–4%). The two highest risk 30-day mortality clusters (N = 118, 4%) were characterised by high urea and creatinine (70% died, 95% CI: 62–82%); and nutritional oedema with low platelets and reduced consciousness (97% died, 95% CI: 92–100%). For post-discharge mortality risk, two low-risk clusters (N = 1753, 61%) were defined by higher-than-average anthropometry (0% died, 95% CI: 0–1%), and gastroenteritis with lower-than-average anthropometry and without major laboratory abnormalities (0% died, 95% CI: 0–1%). Two highest risk post-discharge clusters (N = 267, 9%) included children leaving against medical advice (30% died, 95% CI: 25–37%), and severely-low anthropometry with signs of illness at discharge (46% died, 95% CI: 34–62%). Interpretation WHO clinical syndromes are not sufficient at predicting risk. Integrating basic laboratory features such as urea, creatinine, red blood cell, lymphocyte and platelet counts into guidelines may strengthen efforts to identify high-risk children during paediatric hospitalisations. Funding Bill & Melinda Gates Foundation OPP1131320

    Computer-based tools for decision support in agroforestry: Current state and future needs

    Get PDF
    Successful design of agroforestry practices hinges on the ability to pull together very diverse and sometimes large sets of information (i.e., biophysical, economic and social factors), and then implementing the synthesis of this information across several spatial scales from site to landscape. Agroforestry, by its very nature, creates complex systems with impacts ranging from the site or practice level up to the landscape and beyond. Computer-based Decision Support Tools (DST) help to integrate information to facilitate the decision-making process that directs development, acceptance, adoption, and management aspects in agroforestry. Computer-based DSTs include databases, geographical information systems, models, knowledge-base or expert systems, and ‘hybrid’ decision support systems. These different DSTs and their applications in agroforestry research and development are described in this paper. Although agroforestry lacks the large research foundation of its agriculture and forestry counterparts, the development and use of computer-based tools in agroforestry have been substantial and are projected to increase as the recognition of the productive and protective (service) roles of these tree-based practices expands. The utility of these and future tools for decision-support in agroforestry must take into account the limits of our current scientific information, the diversity of aspects (i.e. economic, social, and biophysical) that must be incorporated into the planning and design process, and, most importantly, who the end-user of the tools will be. Incorporating these tools into the design and planning process will enhance the capability of agroforestry to simultaneously achieve environmental protection and agricultural production goals
    corecore