4,224 research outputs found

    Household catastrophic healthcare expenditure and impoverishment due to rotavirus gastroenteritis requiring hospitalization in Malaysia.

    Get PDF
    BACKGROUND: While healthcare costs for rotavirus gastroenteritis requiring hospitalization may be burdensome on households in Malaysia, exploration on the distribution and catastrophic impact of these expenses on households are lacking. OBJECTIVES: We assessed the economic burden, levels and distribution of catastrophic healthcare expenditure, the poverty impact on households and inequities related to healthcare payments for acute gastroenteritis requiring hospitalization in Malaysia. METHODS: A two-year prospective, hospital-based study was conducted from 2008 to 2010 in an urban (Kuala Lumpur) and rural (Kuala Terengganu) setting in Malaysia. All children under the age of 5 years admitted for acute gastroenteritis were included. Patients were screened for rotavirus and information on healthcare expenditure was obtained. RESULTS: Of the 658 stool samples collected at both centers, 248 (38%) were positive for rotavirus. Direct and indirect costs incurred were significantly higher in Kuala Lumpur compared with Kuala Terengganu (US222Vs.US222 Vs. US45; p<0.001). The mean direct and indirect costs for rotavirus gastroenteritis consisted 20% of monthly household income in Kuala Lumpur, as compared with only 5% in Kuala Terengganu. Direct medical costs paid out-of-pocket caused 141 (33%) households in Kuala Lumpur to experience catastrophic expenditure and 11 (3%) households to incur poverty. However in Kuala Terengganu, only one household (0.5%) experienced catastrophic healthcare expenditure and none were impoverished. The lowest income quintile in Kuala Lumpur was more likely to experience catastrophic payments compared to the highest quintile (87% vs 8%). The concentration index for out-of-pocket healthcare payments was closer to zero at Kuala Lumpur (0.03) than at Kuala Terengganu (0.24). CONCLUSIONS: While urban households were wealthier, healthcare expenditure due to gastroenteritis had more catastrophic and poverty impact on the urban poor. Universal rotavirus vaccination would reduce both disease burden and health inequities in Malaysia

    Computational study of unsteady couple stress magnetic nanofluid flow from a stretching sheet with ohmic dissipation

    Get PDF
    To provide a deeper insight of the transport phenomena inherent to the manufacturing of magnetic nano-polymer materials, in the present work a mathematical model is developed for time-dependent hydromagnetic rheological nanopolymer boundary layer flow and heat transfer over a stretching sheet in the presence of a transverse static magnetic field. Joule heating (Ohmic dissipation) and viscous heating effects are included since these phenomena arise frequently in magnetic materials processing. Stokes’ couple stress model is deployed to simulate non-Newtonian micro-structural characteristics. The Tiwari-Das nanoscale model is adopted which permits different nano-particles to be simulated (in this article both copper-water and aluminium oxide-water nanofluids are considered). Similarity transformations are utilized to convert the governing partial differential conservation equations into a system of coupled, nonlinear ordinary differential equations with appropriate wall and free stream boundary conditions. The shooting technique is used to solve the reduced nonlinear coupled ordinary differential boundary value problem via MATLAB symbolic software. Validation with published results from the literature is included for the special cases of non-dissipative and Newtonian nanofluid flows. Fluid velocity and temperature profiles for both Copper and Aluminium Oxide (Al2O3) nanofluids are observed to be enhanced with greater non-Newtonian couple stress parameter and magnetic parameter whereas the opposite trend is computed with greater values of unsteadiness parameter. The boundary layer flow is accelerated with increasing buoyancy parameter, elastic sheet stretching parameter and convection parameter. Temperatures are generally increased with greater couple stress rheological parameter and are consistently higher for the Aluminium oxide nanoparticle case. Temperatures are also boosted with magnetic parameter and exhibit an overshoot near the wall when magnetic parameter exceeds unity (magnetic force exceeds viscous force). A decrease in temperatures is induced with increasing sheet stretching parameter. Increasing Eckert number elevates temperatures considerably. With greater nanoparticle volume fraction both skin friction and Nusselt number are elevated and copper nano-particles achieve higher magnitudes than aluminium oxide

    Spinons and triplons in spatially anisotropic frustrated antiferromagnets

    Full text link
    The search for elementary excitations with fractional quantum numbers is a central challenge in modern condensed matter physics. We explore the possibility in a realistic model for several materials, the spin-1/2 spatially anisotropic frustrated Heisenberg antiferromagnet in two dimensions. By restricting the Hilbert space to that expressed by exact eigenstates of the Heisenberg chain, we derive an effective Schr\"odinger equation valid in the weak interchain-coupling regime. The dynamical spin correlations from this approach agree quantitatively with inelastic neutron measurements on the triangular antiferromagnet Cs_2CuCl_4. The spectral features in such antiferromagnets can be attributed to two types of excitations: descendents of one-dimensional spinons of individual chains, and coherently propagating "triplon" bound states of spinon pairs. We argue that triplons are generic features of spatially anisotropic frustrated antiferromagnets, and arise because the bound spinon pair lowers its kinetic energy by propagating between chains.Comment: 16 pages, 6 figure

    Prevalence of invasive fungal disease in hematological patients at a tertiary university hospital in Singapore

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of newer azoles as prophylaxis in hematological patients undergoing stem cell transplantation or immunosuppressive chemotherapy has been shown to decrease the risk of developing invasive fungal disease (IFD). However, the cost-effectiveness of such a strategy is dependent on the local epidemiology of IFD. We conducted an audit of hematological patients with IFD in our institution in order to derive the prevalence and types of IFD that occur locally.</p> <p>Findings</p> <p>We conducted a retrospective chart review of all hematological patients who developed possible, probable or definite IFD according to EORTC/MSG criteria in the period from Oct 2007 to Apr 2010. The prevalence of IFD was determined via correlation with institutional database records of all hematological patients treated at our institution over the same time period.</p> <p>There were 39 cases of IFD diagnosed during the study period, with 8 (20.5%) possible, 19 (48.7%) probable and 12 (30.8%) definite cases of IFD. <it>Aspergillus </it>spp. accounted for 83.9% of all probable and definite infections. There was 1 case each of <it>Rhinocladelia </it>spp., <it>Coprinopsis cinerea</it>, <it>Exserohilum </it>spp. sinusitis and <it>Rhizopus </it>spp. sinusitis. IFD occurred in 12 of 124 (9.7%) AML and 4 of 103 (3.9%) ALL patients treated at our institution respectively. There were 10 (16.1%) infections among 62 allogeneic HSCT recipients, six of whom were having concurrent graft-versus-host disease (GVHD). Five other cases occurred after allogeneic HSCT failure, following salvage chemotherapy for disease relapse. The prevalence of IFD during induction chemotherapy was 8.9% (11 of 124 cases) for AML and 1.0% (1 of 103 cases) for ALL. Fluconazole prophylaxis had been provided for 28 out of the 39 (71.8%) cases, while 4 (10.3%) were on itraconazole prophylaxis. The in-hospital mortality was 28.2% (11 of 39 cases), of which 5 (12.8%) deaths were attributed to IFD.</p> <p>Conclusions</p> <p>The burden of IFD is high in our institution, especially in allogeneic HSCT recipients and patients on induction chemotherapy for AML. A prophylactic strategy directed against invasive mould infections for local high-risk patients may be considered as the comparative costs of treatment, prolonged hospitalisation and subsequent delayed chemotherapy favours such an approach.</p

    Effect of mivacurium 200 and 250 μg/kg in infants during isoflurane anesthesia: a randomized controlled trial [ISRCTN07742712]

    Get PDF
    BACKGROUND: Infants usually respond differently to a neuromuscular relaxant compared to children or adults. Isoflurane is commonly used as an anesthetic gas in infants. In an RCT design, we investigated whether a dose of mivacurium 250 μg/kg results in faster onset of action than 200 μg/kg in infants under isoflurane anesthesia. Spontaneous recovery times and cardiovascular response were also evaluated. METHODS: Twenty-four low surgical risk children, aged 6–24 months, undergoing an elective surgery and requiring tracheal intubation were selected. After anesthetic induction, patients randomly received an iv bolus dose of mivacurium 200 or 250 μg/kg. After maximal relaxation, the patient was intubated. Isoflurane was administered to maintain anesthetic level during the surgical procedure. Neuromuscular function was monitored by accelerometry (TOF-Guard) at the adductor pollicies. The first twitch (T) of the TOF and the T4/T1 were measured. The time-course of heart rate and systolic and diastolic blood pressure were analysed by transforming them into their respective areas under the curve. RESULTS: Mivacurium 250 μg/kg produced a maximal T block faster than 200 μg/kg, i.e. 2.4 ± 1.1 vs. 3.5 ± 1.4 min (p < 0.05). Spontaneous recovery times were similar in both groups. Heart rate was similar between doses while systolic and diastolic blood pressures were lower with the higher dose (p < 0.05). Flushing was observed in two cases, one in each group. CONCLUSIONS: The maximal effect of mivacurium 250 μg/kg, in infants under isoflurane anesthesia, was present one minute faster than 200 μg/kg. However, it produced a significant cardiovascular response

    Globally increased ultraconserved noncoding RNA expression in pancreatic adenocarcinoma

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Transcribed ultraconserved regions (T-UCRs) are a class of non-coding RNAs with 100% sequence conservation among human, rat and mouse genomes. T-UCRs are differentially expressed in several cancers, however their expression in pancreatic adenocarcinoma (PDAC) has not been studied. We used a qPCR array to profile all 481 T-UCRs in pancreatic cancer specimens, pancreatic cancer cell lines, during experimental pancreatic desmoplasia and in the pancreases of P48Cre/wt; KrasLSL-G12D/wt mice. Fourteen, 57 and 29% of the detectable T-UCRs were differentially expressed in the cell lines, human tumors and transgenic mouse pancreases, respectively. The vast majority of the differentially expressed T-UCRs had increased expression in the cancer. T-UCRs were monitored using an in vitro model of the desmoplastic reaction. Twenty-five % of the expressed T-UCRs were increased in the HPDE cells cultured on PANC-1 cellular matrix. UC.190, UC.233 and UC.270 were increased in all three human data sets. siRNA knockdown of each of these three T-UCRs reduced the proliferation of MIA PaCa-2 cells up to 60%. The expression pattern among many T-UCRs in the human and mouse pancreases closely correlated with one another, suggesting that groups of T-UCRs are co-activated in PDAC. Successful knockout of the transcription factor EGR1 in PANC-1 cells caused a reduction in the expression of a subset of T-UCRs suggesting that EGR1 may control T-UCR expression in PDAC. We report a global increase in expression of T-UCRs in both human and mouse PDAC. Commonalties in their expression pattern suggest a similar mechanism of transcriptional upregulation for T-UCRs in PDAC.Supported by grants R21/R33CA114304 and U01CA111294. G.A.C. is supported as a Fellow at The University of Texas MD Anderson Research Trust, as a University of Texas System Regents Research Scholar and by the CLL Global Research Foundation. Work in Dr. Calin’s laboratory is supported in part by a 2009 Seena Magowitz–Pancreatic Cancer Action Network AACR Pilot Grant, the Laura and John Arnold Foundation, the RGK Foundation and the Estate of C. G. Johnson, Jr. A.C.P.A.P. was supported by NIH fellowship 5F31CA142238

    Towards high-speed optical quantum memories

    Full text link
    Quantum memories, capable of controllably storing and releasing a photon, are a crucial component for quantum computers and quantum communications. So far, quantum memories have operated with bandwidths that limit data rates to MHz. Here we report the coherent storage and retrieval of sub-nanosecond low intensity light pulses with spectral bandwidths exceeding 1 GHz in cesium vapor. The novel memory interaction takes place via a far off-resonant two-photon transition in which the memory bandwidth is dynamically generated by a strong control field. This allows for an increase in data rates by a factor of almost 1000 compared to existing quantum memories. The memory works with a total efficiency of 15% and its coherence is demonstrated by directly interfering the stored and retrieved pulses. Coherence times in hot atomic vapors are on the order of microsecond - the expected storage time limit for this memory.Comment: 13 pages, 5 figure

    Pomegranate inhibits neuroinflammation and amyloidogenesis in IL-1β stimulated SK-N-SH cells

    Get PDF
    Purpose: Pomegranate fruit, Punica granatum L. (Punicaceae) and its constituents have been shown to inhibit inflammation. In this study we aimed to assess the effects of freeze-dried pomegranate (PWE) on PGE2 production in IL-1β stimulated SK-N-SH cells. Methods: An enzyme immuno assay (EIA) was used to measure prostaglandin E2 (PGE2) production from supernatants of IL-1β stimulated SK-N-SH cells. Expression of COX-2, phospho-IκB and phospho-IKK proteins were evaluated, while NF-κB reporter gene assay was carried out in TNFα-stimulated HEK293 cells to determine the effect of PWE on NF-κB transactivation. Levels of BACE-1 and Aβ in SK-N-SH cells stimulated with IL-1β were measured with an in cell ELISA. Results: PWE (25-200 µg/ml) dose dependently reduced COX-2 dependent PGE2 production in SK-N-SH cells stimulated with IL-1β. Phosphorylation of IκB and IKK were significantly (p<0.001) inhibited by PWE (50- 200 µg/ml). Our studies also show that PWE (50-200 µg/ml) significantly (p<0.01) inhibited NF-κB transactivation in TNFα-stimulated HEK293 cells. Furthermore PWE inhibited BACE-1 and Aβ expression in SK-N-SH cells treated with IL-1β. Conclusions: Taken together, our study demonstrates that pomegranate inhibits inflammation, as well as amyloidogenesis in IL-1β-stimulated SK-N-SH cells. We propose that pomegranate is a potential nutritional strategy in slowing the progression of neurodegenerative disorders like Alzheimer’s disease
    corecore